Taksiran generalized ridge sebagai taksiran parameter pada model regresi linier berganda untuk kasus multikolinieritas = Generalized ridge estimator as an parameter estimator in multiple linear regression for multicollinearity case
Amanda Walidya;
Saskya Mary Soemartojo, supervisor
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013)
|
Analisis regresi linier berganda adalah suatu teknik statistik untuk memodelkan dan menganalisis hubungan antara variabel respon dan variabel-variabel regresor. Pada umumnya, penaksiran parameter pada model regresi linier berganda menggunakan metode OLS (Ordinary Least squares) yang menghasilkan taksiran least squares. Pada model regresi linier berganda dimungkinkan kondisi multikolinieritas yang menyebabkan variansi taksiran least squares menjadi besar sehingga taksiran least squares tidak stabil. Salah satu metode alternatif penaksiran parameter model regresi linier berganda untuk kasus multikolinieritas adalah metode ridge yang menghasilkan taksiran ridge. Taksiran ridge bergantung pada sebuah konstanta bias k yang disebut konstanta bias ridge. Metode generalized ridge merupakan pengembangan dari metode ridge, dengan menerapkan Dekomposisi Spektral untuk memperoleh bentuk kanonik, kemudian ditambahkan beberapa konstanta bias sebanyak jumlah variabel regresor yang diperoleh dari proses iterasi. Taksiran generalized ridge menghasilkan mean square error yang lebih kecil dari mean square error taksiran least squares. Analysis of regression is a statistical technique for modeling and analizing the relationship between the response variable and regressor variables. This skripsi is modeling the relationship between one response variable and several regressor variables when there is no linear relationship among the regressors variable. The ordinary least squares method is used to estimate regression coefficient. Multicollinearity result in large variance for the least squares estimators of the regression coefficient, and the estimators also will be unstable. Ridge method is the most common method to overcome this problem. Ridge estimator depends on biasing parameter k called constant of ridge. Generalized ridge is an extension of the ordinary ridge method by applying spectral decompotition to obtain the canonical form, then adding biasing parameters as many as number of regressor variables that specified by iteration. The advantage of generalized ridge estimator over the least squares estimator is generalized ridge estimator has less scalar mean square error (mse) than mse of least squaress estimator. |
S54349-Amanda Walidya.pdf :: Unduh
|
No. Panggil : | S54349 |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | |
Tipe Konten : | |
Tipe Media : | |
Tipe Carrier : | |
Deskripsi Fisik : | xii, 108 hlm. ; 30 cm. + lamp. |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S54349 | 14-24-03037878 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20368785 |