Model pengukuran risiko Value at Risk (VaR) saat ini telah digunakan secara luas, tidak hanya pada sektor perbankan, tapi juga disektor lain seperti asuransi. Tujuan karya akhir ini adalah untuk mengukur Value at Risk (VaR) dengan pendekatan distribusi bersama copula, untuk menguji investasi 5 jenis saham yang dilakukan oleh PT ASABRI (Persero). Hasil distribusi return dari kelima saham bersifat heteroskedastis, sehingga dilakukan pendekatan GARCH(1,1) pada data residual. Nilai GARCH(1,1) tersebut digunakan untuk mencari distribusi portofolio saham dengan pendekatan distribusi bersama copula. Distribusi copula yang paling fit untuk digunakan adalah Clayton Copula berdasarkan nilai AIC terkecil, yang selanjutnya digunakan untuk mengukur besarnya potensi kerugian dengan menggunakan tingkat keyakinan 99% menggunakan monte carlo simulation dengan random number sebanyak 10.000 dan divalidasi dengan menggunakan Kupiec test. Hasil pengujian dengan Kupiec test menunjukkan bahwa model VaR dengan pendekatan distribusi clayton copula valid untuk mengukur besarnya potensi kerugian. Risk measurement model of Value at Risk (VaR) is now widely used, not only in the banking sector, but also in other sector like insurances. The purpose of this thesis is to measure Value at Risk (VaR) with common distribution copula approach, to test 5 investment shares owned by PT ASABRI (Persero). The results of the return distribution of the five stocks are heteroskedastis, so do approach GARCH (1,1) at the data residuals. Value GARCH (1,1) is used to find the distribution of the stock portfolio distribution with copula approach. Copula distribution is most fit to be used is Clayton Copula based on smallest AIC value, which is then used to measure the magnitude of potential losses using a 99% confidence level using Monte Carlo simulation with a random number as many as 10,000 and validated using the Kupiec test. The Kupiec test results shows that the VaR model using clayton copula distribution approach is valid for measuring the magnitude of potential losses. |