:: eBooks :: Kembali

eBooks :: Kembali

Low rank approximation: algorithms, implementation, applications

Ivan Markovsky ([, Springer], 2012)

 Abstrak

Data approximation by low-complexity models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including, system and control theory, signal processing, computer algebra for approximate factorization and common divisor computation, computer vision for image deblurring and segmentation, machine learning for information retrieval and clustering, bioinformatics for microarray data analysis, chemometrics for multivariate calibration, and psychometrics for factor analysis.

 File Digital: 1

Shelf
 Low Rank Approximation Algorithms, Implementation, Applications, Ivan Markovsky 2012.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : e20410845
Entri utama-Nama orang :
Subjek :
Penerbitan : London: [, Springer], 2012
Sumber Pengatalogan: LibUI eng rda
Tipe Konten: text
Tipe Media: computer
Tipe Pembawa: online resource
Deskripsi Fisik:
Tautan: http://link.springer.com/book/10.1007%2F978-1-4471-2227-2
Lembaga Pemilik:
Lokasi:
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
e20410845 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20410845