ABSTRAK Pada tahun 2013, Badan Pusat Statistik mencatat bahwa telah terjadi 100.106 kasus kecelakaan lalu lintas di Indonesia. Sebagian besar kecelakaan disebabkan oleh faktor manusia, yaitu mengantuk. Sistem pendeteksi kantuk dikembangkan untuk mengatasi hal ini. Sistem pendeteksi kantuk dibangun menggunakan pustaka OpenCV, dengan kombinasi dari beberapa algoritma, yaitu Haar Cascade Classifier, fungsi blur, Canny dan kontur. Algoritma Haar Cascade Classifier digunakan untuk mendeteksi area wajah dan area mata pada pengemudi. Sedangkan kombinasi antara fungsi blur, canny dan kontur digunakan untuk mendeteksi objek mata dan menganalisis sedang terbuka atau tertutupnya mata. Performa sistem pendeteksi kantuk diuji melalui empat variabel, yaitu kernel size, nilai threshold, perbedaan kondisi pencahayaan dan karakteristik mata. Berdasarkan hasil pengujian, kernel size terbaik untuk mendeteksi mata adalah (4,4). Selain itu, nilai threshold terbaik untuk lower threshold dan upper threshold adalah 70-110 dan 210-240. Perbedaan kondisi pencahayaan (pagi, siang, sore dan malam) memiliki pengaruh terhadap sistem dengan tingkat kesalahan sebesar 20%. Karakteristik mata (berkacamata dan tidak berkacamata) memiliki pengaruh terhadap sistem dengan tingkat kesalahan sebesar 16,7%. ABSTRACTIn 2013, Badan Pusat Statistik (Statistics Indonesia) recorded that 100.106 cases of traffic accident have occured in Indonesia. Mostly caused by human error, i.e. drowsiness. Drowsiness detection system is developed to respond this situation. Drowsiness detection system is built through OpenCV library by combining the Haar Cascade Classifier algorithm with blur, canny and contour function. Haar Cascade Classifier was used to detect areas of face and eyes whereas the combination of blur, canny and contour function is used to detect the driver’s eyes and analyze the open or closed driver’s eyes. The performance of drowsiness detection system was tested through four variables; kernel size, threshold value, lighting condition (morning, noon, afternoon and night) and eye’s characteristic (eyeglasses or not). Based on the experiments, the best kernel size to detect the driver’s eyes is 4,4. Then, the best lower threshold and upper threshold are 70-110 and 210-240. Subsequently the light conditions has a 20 % error rate to the system. The eye’s characteristic has a 16,7 % error rate to the system. |