Aplikasi modified fuzzy c-means untuk glioma otak dan infeksi otak = Application of modified fuzzy c-means for brain glioma and brain infection / Ahmad Afif Fauzan
Ahmad Afif Fauzan;
Poyk, Frederik Moses, supervisor; Pandelaki, Jacub, co-promotor; Dipo Aldila, examiner; Alhadi Bustamam, examiner; Helen Burhan, examiner
([Publisher not identified]
, 2015)
|
ABSTRAK Magnetic Resonance spectroscopy (MRS) adalah suatu modalitas dari pemeriksaan MRI. MRS digunakan untuk mengetahui kandungan metabolit pada pasien penderita glioma otak Astrocytoma atau infeksi otak. Hasil analisa pada MRS tidak bisa dijadikan sebuah acuan untuk menentukan seorang pasien menderita glioma otak atau infeksi otak. Dalam tugas akhir ini akan dibahas proses klasifikasi terhadap data MRS untuk menentukan penyakit yang diderita oleh seorang pasien. Tujuan akhir dari penulisan akhir ini adalah mentukan keakuratan klasifikasi data MRS dengan menggunakan metode Modified Fuzzy C-Means. Modified Fuzzy C-Means adalah pengembangan dari metode Fuzzy C-Means. Sama seperti metode Fuzzy C-Means, metode Modified Fuzzy C-Means merupakan metode yang mengalokasikan data dengan menggunakan fungsi membership (keanggotaan). Fungsi membership ini digunakan untuk menentukan seberapa besar kemungkinan sebuah data dapat menjadi anggota kedalam sebuah cluster, dengan menggunakan pembobotan pada setiap pusat cluster-nya. Keakuratan klasifikasi sangat bergantung kepada parameter-parameter yang terdapat pada algoritma Modified Fuzzy C-Means. ABSTRACT Magnetic resonance spectroscopy (MRS) is a modality of MRI examination. MRS is used to determine the content of metabolites in patients with Astrocytoma brain glioma or brain infection. An analysis of the MRS could not be used as a reference for determining a patient suffering from a brain glioma or brain infection. In this project will discuss the process of classification of the data MRS to determine the diseases suffered by a patient. The ultimate purpose of writing this final project MRS data classification accuracy by using Modified Fuzzy C-Means. Modified Fuzzy C-Means is the development of methods of Fuzzy C-Means. Just like Fuzzy C-Means method, the method Modified Fuzzy C-Means is a method that allocates data by using the membership function (membership). This membership function is used to determine how likely a member of the data can be added to a cluster, using a weighting on each of its cluster center. Classification accuracy is very dependent on the parameters contained in the Modified algorithm Fuzzy C-Means. |
S59393-Ahmad Afif F.pdf :: Unduh
|
No. Panggil : | S59393 |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | [Place of publication not identified]: [Publisher not identified], 2015 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | unmediated ; computer |
Tipe Carrier : | volume ; online resource |
Deskripsi Fisik : | xiv, 51 pages : illustration ; 30 cm + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S59393 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20413759 |