:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pendeteksian abnormalitas pada radiografi paru pasien dewasa dengan metode K-means clustering = Abnormalities detection in adult patients radiography image by K-means clustering method / Atina

Atina; Djarwani Soeharso Soejoko, supervisor; Prawito Prajitno, supervisor; Sastra Kusuma Wijaya, examiner; Supriyanto Ardjo Pawiro, examiner; I Putu Susila, examiner ([Publisher not identified] , 2015)

 Abstrak

[ABSTRAK
Intensitas keabuan yang sangat dekat memungkinkan terjadinya kesalahan dalam
menginterpretasikan citra hasil Computed Radiography (CR). Maka diperlukan
algoritma yang dapat mempermudah tim medis mendiagnosa kondisi pasien
khususnya bagian paru. Penelitian ini menggunakan tingkat keabuan /intensitas
citra sebagai dasar clustering dan segmentasi Region of Interest (ROI ) yang akan
dilakukan dengan sistem komputerisasi. Sehingga hasil pembacaan lebih akurat
dibanding secara manual. Data sampel berupa 100 citra hasil CR pasien paru
dewasa Rumah Sakit Pusat Pertamina yaitu 50 citra norma sebagai citra acuan dan
50 citra uji (normal dan abnormal). Pada clustering diuji coba dengan jumlah
cluster (k) bervariasi yaitu 3, 4, .., 10. Citra hasil clustering yang terbaik
ditunjukkan pada k = 8 karena dapat memvisualisasikan batas warna dengan lebih
jelas dibanding dengan k yang lain. Pada segmentasi ROI, citra paru dibagi
menjadi 33 daerah sesuai posisi anatomi paru yang terdiri dari 6 daerah apex, 11
daerah hilum dan 16 daerah peripheral. Selanjutnya, masing-masing daerah
pembagian diukur intensitasnya. Intensitas citra acuan dijadikan dasar untuk
menentukan abnormalitas citra uji, intensitas citra uji yang lebih tinggi dari
intensitas citra normal dikategorikan sebagai citra abnormal. Akurasi sistem pada
penelitian ini adalah 66%.

ABSTRACT
Gray intensity is very close to allow for errors in interpreting the Computed
Radiography (CR) image. It would require an algorithm that can facilitate medical
team to diagnose the patient's condition especially the lungs. Clustering k-means
clustering and segmentation Region of Interest (ROI) will be done by a
computerized system based on the image gray level / intensity. 100 CR image
used as the sample data from Rumah Sakit Pusat Pertamina, 50 image as
references images and 50 images as tested image. On clustering tested by the
number of clusters (k) varies the 3, 4, .., 10. The clustering of the best image
results are shown in k = 8 because it can visualize the color boundaries more
clearly than the other k. At ROI segmentation, lung image is divided into 33
regions corresponding anatomical position lung consist of 6 regional apex, hilum
area 11 and 16 peripheral areas. Furthermore, each regional division of the
measured intensity. The intensity of the reference image used as the basis for
determining abnormality test images, test image intensity higher than normal
image intensity categorized as abnormal image. The system accuracy in this study
was 66%., Gray intensity is very close to allow for errors in interpreting the Computed
Radiography (CR) image. It would require an algorithm that can facilitate medical
team to diagnose the patient's condition especially the lungs. Clustering k-means
clustering and segmentation Region of Interest (ROI) will be done by a
computerized system based on the image gray level / intensity. 100 CR image
used as the sample data from Rumah Sakit Pusat Pertamina, 50 image as
references images and 50 images as tested image. On clustering tested by the
number of clusters (k) varies the 3, 4, .., 10. The clustering of the best image
results are shown in k = 8 because it can visualize the color boundaries more
clearly than the other k. At ROI segmentation, lung image is divided into 33
regions corresponding anatomical position lung consist of 6 regional apex, hilum
area 11 and 16 peripheral areas. Furthermore, each regional division of the
measured intensity. The intensity of the reference image used as the basis for
determining abnormality test images, test image intensity higher than normal
image intensity categorized as abnormal image. The system accuracy in this study
was 66%.]

 File Digital: 1

Shelf
 T43838-Atina.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T43838
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2015
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 69 pages : illustartion ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T43838 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20414571