[Pada tesis ini dibahas suatu model terorisme di Indonesia. Model matematika ini dikembangkan dengan membagi populasi manusia ke dalam empat kelas, yaitu kelas umum (G), kelas bibit (S), kelas teroris aktif (FA), dan kelas teroris yang ada di lembaga pemasyarakatan (FP ). Analisis dinamik model berupa kajian titik ekuilibrium seperti jaminan eksistensi, kestabilan dan bifurkasi dibahas dalam tesis ini. Analisis bifurkasi terhadap model yang telah dikonstruksi dilakukan dengan menggunakan software Matcont. Dari hasil kajian eksistensi titik ekuilibrium diperoleh tiga titik ekuilibrium, yaitu titik ekuilibrium bebas teroris E0 = (1; 0; 0), titik ekuilibrium teroris yang berupa E1 = (g1; s1; v1) dan E2 = (g2; s2; v2). Titik ekuilibrium E0 ada tanpa syarat, sedangkan E1 dan E2 ada dengan syarat tertentu. Berdasarkan hasil analisis kestabilan diperoleh E0 stabil asimtotis, E2 stabil, sedangkan E1 tak stabil. Simulasi numerik diberikan dalam beberapa kondisi dengan memanfaatkan software Mathematica 10.0. In this thesis a model of terrorism in Indonesia is discussed. This model is developed by dividing the human population into four classes, namely general class (G), seed of terrorist class (S), active terrorist class (FA), and terrorist who are in a prison (FP ). Dynamical analysis such as study about equilibrium point such as existence, stability, and bifurcation are discussed in this thesis. A bifurcation analysis of the model is performed using software Matcont. From the results of the study of the existence of the equilibrium point, it is obtained three equilibrium points, namely terrorism-free equilibrium point E0 = (1; 0; 0), and terrorism equilibrium points E1 = (g1; s1; v1) and E2 = (g2; s2; v2). The equilibrium point E0 exists unconditionally, whereas E1 and E2 exist with certain conditions. From the analysis of stability equilibrium points obtained that E0 is asymptotically stable, E2 is stable, and E1 is unstable. Numerical simulation is given in some conditions by using software Mathematica 10.0., In this thesis a model of terrorism in Indonesia is discussed. This model isdeveloped by dividing the human population into four classes, namely generalclass (G), seed of terrorist class (S), active terrorist class (FA), and terrorist whoare in a prison (FP ). Dynamical analysis such as study about equilibrium pointsuch as existence, stability, and bifurcation are discussed in this thesis. Abifurcation analysis of the model is performed using software Matcont. From theresults of the study of the existence of the equilibrium point, it is obtained threeequilibrium points, namely terrorism-free equilibrium point E0 = (1; 0; 0), andterrorism equilibrium points E1 = (g1; s1; v1) and E2 = (g2; s2; v2). Theequilibrium point E0 exists unconditionally, whereas E1 and E2 exist withcertain conditions. From the analysis of stability equilibrium points obtained thatE0 is asymptotically stable, E2 is stable, and E1 is unstable. Numericalsimulation is given in some conditions by using software Mathematica 10.0] |