Singularities of differentiable maps, volume 1 : classification of critical points, caustics and wave fronts
V.I. Arnold (Springer, 2012)
|
Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory, monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. |
Singularities of Differentiable Maps, Volume 1.pdf :: Unduh
|
No. Panggil : | e20420538 |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Subjek : | |
Penerbitan : | New York: Springer, 2012 |
Sumber Pengatalogan: | LibUI eng rda |
Tipe Konten: | text |
Tipe Media: | computer |
Tipe Pembawa: | online resource |
Deskripsi Fisik: | |
Tautan: | http://link.springer.com/book/10.1007%2F978-0-8176-8340-5 |
Lembaga Pemilik: | |
Lokasi: |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
e20420538 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20420538 |