Deskripsi Lengkap
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text (rdacontent) |
Tipe Media : | unmediated (rdamedia); computer (rdamedia) |
Tipe Carrier : | volume (rdacarrier); online resource (rdacarrier) |
Deskripsi Fisik : | xi, 63 pages : illustration. ; 28 cm. |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
- Ketersediaan
- File Digital: 1
- Ulasan
- Sampul
- Abstrak
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S62417 | S62417 | TERSEDIA |
Tidak ada ulasan pada koleksi ini: 20422308 |
Abstrak
Invers Moore-Penrose merupakan perumuman invers pada matriks bujur sangkar. Setiap matriks dengan entri bilangan kompeks memiliki invers Moore-Penrose dan invers Moore-Penrose dari suatu atriks adalah tunggal. Ketunggalan invers Moore-Penrose dapat digunakan sebagai pengganti invers pada matriks persegi maupun persegi panjang. Dalam skripsi ini, dibahas konstruksi invers Moore-Penrose melalui f1ginvers, f1;2ginvers, f1;2;3ginvers, f1;2;4ginvers, f1;3ginvers, dan f1;4ginvers. Kemudian, dibahas pula konstruksi invers Moore-Penrose dari matriks Laplacian dan beberapa sifat invers Moore-Penrose dari matriks Laplacian. Pada Teorema 4.4, invers Moore-Penrose dari matriks Laplacian memenuhi persamaan LL? = L?L = I 1n J, dengan J merupakan matriks berukuran nn yang setiap entrinya bernilai satu. Sehingga, invers Moore-Penrose dari matriks Laplacian dapat digunakan sebagai pengganti invers matriks Laplacian.
Moore-Penrose inverse is a generalized inverse from square matrices. Every matrix with complex entries has a unique Moore-Penrose inverse. Uniqueness of Moore-Penrose inverse can be used as a substitute inverse on square or rectangular matrices. In this skripsi, the construction of Moore-Penrose inverse is explain through f1ginverse, f1;2ginverse, f1;2;3ginverse, f1;2;4ginverse, f1;3ginvers, and f1;4ginvers. Moreover, the construction of Moore-Penrose inverse for Laplacian matrices, as well as some properties of the inverse, is also discussed. In Theorem 4.4, Moore-Penrose inverse satisfy the equation LL? = L?L = I 1 nJ, where J is an nn matrix with all entries are one.;Moore-Penrose inverse is a generalized inverse from square matrices. Every matrix with complex entries has a unique Moore-Penrose inverse. Uniqueness of Moore-Penrose inverse can be used as a substitute inverse on square or rectangular matrices. In this skripsi, the construction of Moore-Penrose inverse is explain through f1ginverse, f1;2ginverse, f1;2;3ginverse, f1;2;4ginverse, f1;3ginvers, and f1;4ginvers. Moreover, the construction of Moore-enrose inverse for Laplacian matrices, as well as some properties of the inverse, is also discussed. In Theorem 4.4, Moore-Penrose inverse satisfy the equation LL? = L?L = I 1 nJ, where J is an nn matrix with all entries are one.
Moore-Penrose inverse is a generalized inverse from square matrices. Every matrix with complex entries has a unique Moore-Penrose inverse. Uniqueness of Moore-Penrose inverse can be used as a substitute inverse on square or rectangular matrices. In this skripsi, the construction of Moore-Penrose inverse is explain through f1ginverse, f1;2ginverse, f1;2;3ginverse, f1;2;4ginverse, f1;3ginvers, and f1;4ginvers. Moreover, the construction of Moore-Penrose inverse for Laplacian matrices, as well as some properties of the inverse, is also discussed. In Theorem 4.4, Moore-Penrose inverse satisfy the equation LL? = L?L = I 1 nJ, where J is an nn matrix with all entries are one.;Moore-Penrose inverse is a generalized inverse from square matrices. Every matrix with complex entries has a unique Moore-Penrose inverse. Uniqueness of Moore-Penrose inverse can be used as a substitute inverse on square or rectangular matrices. In this skripsi, the construction of Moore-Penrose inverse is explain through f1ginverse, f1;2ginverse, f1;2;3ginverse, f1;2;4ginverse, f1;3ginvers, and f1;4ginvers. Moreover, the construction of Moore-enrose inverse for Laplacian matrices, as well as some properties of the inverse, is also discussed. In Theorem 4.4, Moore-Penrose inverse satisfy the equation LL? = L?L = I 1 nJ, where J is an nn matrix with all entries are one.