Full Description

Cataloguing Source LibUI ind rda
Content Type text (rdacontent)
Media Type unmediated (rdamedia); computer (rdamedia)
Carrier Type volume (rdacarrier); online resource (rdacarrier)
Physical Description xii, 67 pages : illustration ; 28 cm
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI, Lantai 3
 
  •  Availability
  •  Digital Files: 1
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
S62456 14-18-956719293 TERSEDIA
No review available for this collection: 20422509
 Abstract
ABSTRAK
Integral Riemann-Stieltjes, salah satu konsep penting dalam analisis dan kalkulus, merupakan bentuk yang lebih umum dari integral Riemann. Untuk beberapa fungsi, nilai eksak suatu integral Riemann-Stieltjes tidak mudah didapatkan. Oleh karena itu, terdapat beberapa metode yang dapat digunakan untuk mencari nilai tersebut secara numerik, salah satunya adalah aturan trapesium. Walaupun demikian, metode aproksimasi ini memiliki galat dalam mencari nilai tersebut. Studi literatur ini bertujuan untuk mencari batas galat terbaik dalam mengaproksimasi nilai eksak integral Riemann-Stieltjes menggunakan aturan trapesium. Dalam studi ini, akan ditinjau beberapa fungsi khusus tertentu yakni fungsi variasi terbatas, fungsi p-H-Hölder, fungsi Lipschitz, dan fungsi tak turun.
ABSTRACT
Riemann-Stieltjes intgeral, one of the most important concepts in analysis and calculus, is a general form of Riemann integral. For some functions, the exact value of Riemann-Stieltjes integral cannot be simply obtained. Therefore, there are some methods that could be used to find the value numerically, one of them is trapezoidal rule. However, this rule has an error in finding the value. The study of literature is to learn the sharp bounds for the error in approximating the Riemann-Stieltjes integral by trapezoidal rule. In this study, various classes of functions, such as functions of bounded variation, p-H-Hölder type, Lipschitzian, and nondecreasing functions are recalled.