:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perbandingan kinerja pengendali dic menggunakan backpropagation dan elman neural network = Performance comparision of dic using backproapagation and elman neural network

Samuel Zakaria; Benyamin Kusumoputro, supervisor; Wahidin Wahab, examiner; Abdul Halim, examiner (Fakultas Teknik Universitas Indonesia, 2016)

 Abstrak

Perkembangan jaman menyebabkan plant modern memiliki struktur yang lebih kompleks dengan sistem yang non-linier, yang terdiri dari banyak masukan dan keluaran. Dalam struktur yang lebih kompleks tersebut, memungkinkan juga terjadinya disturbance pada sistem. Maka dari itu, diperlukan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis yang disebabkan oleh perubahan kondisi lingkungan kerja.
Tujuan penelitian ini adalah untuk membandingkan performa antara pengendali backpropagation dan elman neural network terhadap suatu sistem. Data yang digunakan pada percobaan ini,menggunakan model matematis, data PPR, dan data helikopter. Kemudian juga dilakukan pengujian sistem Backpropagation dan Elman neural network terhadap reference input yang diberikan disturbance dengan metode online learning dan feedforward.
Hasil dari percobaan, menunjukkan karakteristik Elman lebih baik dibandingkan backpropagation dalam pengujian offline dan online dengan sistem yang diberikan gangguan. Hasil respon transient dari Elman adalah %OS sebesar 5,43% pada pengujian online dan selisih satu data lebih cepat pada settling time dibanding backpropagation pada pengujian offline.
Hasil pengujian online memiliki hasil yang baik pada kedua metode jika dibandingkan dengan pengujian offline dari segi persentase kesalahan tunak, karena mencapai nilai 0%.

Complexcity, there would be a probability of disturbance presences Therefore, we need a control system that able to automatically adapt with the characteristic changes that correspond to the environment conditions.
The purpose of this study was about to compare performances between backpropagation and elman neural network controller within the system. This experiment using mathematical model, data PPR, and data helicopter UAV. Trained backpropagation and Elman neural network will be tested by giving reference input and disturbance and also using method of feedforward and online learning.
The result of the experiment, shows the characteristics of Elman that is better than backpropagation in offline and online testing. The results %OS of Elman when using online learning is about 5.43% and there one a gap of single data, that shows elman faster on settling time than backpropagation when using offline system.
Online test outputs have good results on both algorithm than offline testing in terms of percentage of steady state error, because it reaches a value of 0%.

 File Digital: 1

Shelf
 S63145-Samuel Zakaria.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S63145
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2016
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 72 pages : illustration ; 22 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S63145 14-18-488813629 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20430518