:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Akurasi estimator maximum likelihood dan estimator maximum likelihood with robust standard errors dalam mengestimasi true score: sebuah studi tentang data second order level yang diperlakukan sebagai first order level = Accuracy of maximum likelihood estimator and maximum likelihood with robust standard errors in estimating true score: a study of mistreatment of second order data which specified into first order data / Poppy Ramadhani

Poppy Ramadhani; Jahja Umar, supervisor; Nurul Arbiyah, supervisor; Bastari, examiner; Guritnaningsih A. Santoso, examiner ([Publisher not identified] , 2016)

 Abstrak

ABSTRAK
Item response theory atau yang sering disingkat sebagai IRT memberikan estimasi kemampuan peserta yang lebih tepat jika dibandingkan dengan classical test theory. Estimasi yang dihasilkan pada IRT bergantung pada ketepatan model yang digunakan. Pemilihan model IRT dapat dilakukan setelah didapatkan hasil confirmatory factor analysis dengan melihat nilai model fit. Model dengan nilai good fit yang lebih baik akan menjadi model yang
terpilih. Pemilihan model fit dengan langkah ini disebut sebagai pemilihan model melalui data empirik. Pemilihan model dan struktur dapat dibantu dengan melihat nature dari sebuah tes. Seperti pada tes seleksi dengan bentuk pilihan maka model IRT yang tepat digunakan untuk mengestimasi adalah model 3 parameter logistik. Kesalahan dalam memilih struktur dan model IRT terkadang tidak dapat dihindari karena ketidaktahuan peneliti. Diantara estimator yang ada dalam IRT terdapat satu estimator yang dikenal memiliki robust standar error atau dapat menghasilkan standar eror yang kecil jika
digunakan pada model IRT yang tidak tepat. Estimator ini dinamakan maximum likelihood with robust standard errors. Memperkecil standar eror berarti memperkecil ketidakakuratan estimasi yang disebabkan oleh kesalahan pemilihan model. Keakuratan MLR akan disandingkan dengan maximum likelihood estimator dalam mengestimasi. MLE dikenal dengan propertinya yang asimptotik jika digunakan pada sampel besar. Hasil yang didapat
memperlihatkan bahwa MLR dapat menghasilkan akurasi yang lebih baik pada model dengan sampel kecil sedangkan pada sampel besar MLE dan MLR memberikan hasil yang tidak berbeda.

ABSTRACT
Item response theory gives more acurrate estimates of latent trait compared to classical test theory. These estimates are independent to any sample and test. But the result of estimates are depend on which model is used. That is why the selection of model in IRT is very important. The wrong model will cause the estimates inflate or underrated. Before a data can be calculated with IRT model we need to check the appropriate model and structure first. To know what structure will be used we first check the data using confirmatory factor analysis. The result will show which structure fits the data more, is it first order or second order data. To select the IRT model we do a fit of model testing. This is a trial and error step. Usually in fit model testing we propose more than one model to be tested. As not all models can be included for being tested, there are the chance for using a wrong model. Using a wrong structure and model sometimes can not be helped. In IRT there are estimator named maximum likelihood with robust standard error which is specialized to estimate
parameters when the model is wrong. This can be done because of MLR is using Huber Sandwich method as estimator. In this research MLR is being compared to MLE to estimate a second order data which is treated as first order data. The error is being accompanied with IRT model variations (1-PL, 2-PL, and 3-PL) and three samples variations (350, 500, and 2000). As 2 x 3 x 3 combination models, we will have 18 models in result. The results showing that MLR produces smaller standard. But MLE is quite good too when the sample
being used is as big as 2000

 File Digital: 1

Shelf
 T45841-Poppy Ramadhani.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T45841
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2016
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online source
Deskripsi Fisik : xiii, 137 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T45841 15-18-045600440 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20433399