Analisis performa algoritma klasifikasi pada data mining dengan data serangan malware microsoft = Data mining classification alghorithm performance analysis using microsoft malware attack data
Dimas Syuman Gritosandiko;
Muhammad Salman, supervisor; Anak Agung Putri Ratna, examiner; Dodi Sudiana, examiner
(Fakultas Teknik Universitas Indonesia, 2016)
|
Malware merupakan suatu hal yang dapat merusak maupun menganggu aktivitas dari suatu jaringan ataupun komputer, untuk mencegah semakin tersebarnya Malware maka dibutuhkan pendeteksi untuk malware disuatu jaringan maka dapat ditempatkan suatu Honey Pot ataupun DNS Sinkhole untuk memantau adanya penyerangan terhadap jaringan tersebut ataupun ada malware yang berusaha masuk pada jaringan tersebut, data ndash; data malware yang telah dikumpulkan selanjutnya dapat diolah dengan menggunakan data mining, dengan menggunakan data mining, hasil pengolahan data tersebut dapat dijadikan sebagai parameter bagaimana aktivitas malware yang sering masuk kedalam jaringan dan jenis malware apa saja yang ada dijaringan tersebut. Dengan menggunakan Oracle Data Miner dapat dikatakan untuk tipe data malware yang digunakan untuk data mining adalah Naive Bayes dan Support Vector Machine SVM dimana menunjukkan untuk tipe data seperti ini algoritma Naive Bayes lebih berfungsi dengan baik dibandingkan dengan SVM terlihat dari presentase keberhasilan pengolahan datanya dimana Naive Bayes memiliki 76 keberhasilan sedangkan SVM hanya 32 keberhasilan. Malware are something that can damage or disrupt activities of a network or computer. To prevent spreading of a malware, it is required a detection or a protection system in a network. Honey Pot and DNS Sinkhole are the two kinds of malware detection system that can detect and monitoring network activities and capture or prevent any malware attack that can happens inside the network or computer. Malware datas that already been gathered and collected then will be processed using data mining. With data mining, the mining result will be used as a parameter in how malware activities inside a network and what kind of malware that actived inside a network. Using Oracle Data Miner with data that consist of malware type can be done using Naive Bayes and Support Vector Machine SVM . With this kind of data Naive Bayes perform better than the other algorithm SVM judging by the completion percentage of data mining process for Naive Bayes are 76 and SVM are 32. |
S66468-Dimas Syuman G.pdf :: Unduh
|
No. Panggil : | S66468 |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Teknik Universitas Indonesia, 2016 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | unmediated ; computer |
Tipe Carrier : | volume ; online resource |
Deskripsi Fisik : | xiv, 64 pages : illustration ; 30 cm |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S66468 | 14-18-247924293 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20444517 |