Lititum Titanat Oksida Li4Ti5O12 dipertimbangkan menjadi elektroda anoda pada baterai Litium Ion. LTO adalah kandidat yang menjanjikan untuk menggantikan Grafit. Grafit memiliki kapasitas yang tinggi, namun disamping itu, keamanan dari material ini dipertanyakan, pembentukan struktur dendritik yang dapat menyebabkan hubungan arus pendek atau konslet akhir-akhir ini banyak di diskusikan. Oleh karena itu LTO dengan properti lsquo;zero strain rsquo;, dimana tidak ada perubahan volume selama interkalasi adalah kandidat yang menjajikan. Dibandingkan dengan grafit, LTO memiliki kapasitas yang kecil, oleh karena itu penambahan elemen lain untuk meningkatkan kapasitas dari LTO dibutuhkan. Dalam penelitian ini, penambahan Sn dalam LTO telah dilakukan, penambahan Sn bertujuan untuk meningkatkan kapasitas dan konduktifitas. Menggunakan metode sol-gel untuk mensintesis LTO, dan diikuti oleh metode solid-state, LTO di campur dengan Sn menggunakan HEBM High energy Ball Mill , beberapa penambahan konsentrasi Sn dilakukan, yaitu 10 , 20 , 30. Karakterisasi material telah dilakukan menggunakan SEM-EDS, BET, XRD. Dari hasil BET, penambahan Sn mengakibatkan berkurangnya surface area. Pada hasil SEM-EDS dari lembaran anoda, memperlihatkan aglomerasi dan distribusi yang buruk dari partikel, dari hasil XRD menunujukan adanya pengotor berupa TiO2 Rutile. Pembuatan baterai sel setengah telah dilakukan, dengan Litium logam sebagai Anoda, LTO dan Sn sebagai Katoda. Diikuti dengan pengujian performa electrokimia, yaitu EIS, CV, CD. EIS dilakukan sebelum dan sesudah tes CV, EIS sebelum tes CV menunjukan LTO dengan 30 kandungan Sn memiliki konduktifitas yang paling tinggi, sementara untuk EIS setelah CV, menunjukkan LTO dengan 20 kandungan Sn memiliki konduktifitas paling tinggi, Sn yang berlebih akan mengakibatkan penurunan performa karena fenomena Pulverisasi. Hasil CV menunjukan adanya dua peak pada masing-masing elemen, menunjukan reversibilitas dari reaksi. Pada hasil CD, LTO dengan 20 kandungan Sn memiliki kapasitas paling baik, oleh karena itu penambahan Sn yang optimum ialah 20. Lithium Titanate Oxide Li4Ti5O12 has been considered as anode electrode in Lithium Ion Batteries. LTO is a promising candidate to replace Graphite. Graphite has high capacity, but despite their superiority, safety concern of this material is questioned, formation of dendritic structure which leads to short circuit is commonly discussed. Thus, LTO with zero strain property, where there is no volume change during intercalation is a promising candidate. Compared with graphite, LTO has small capacity, thus addition of other elements to increase its capacity is required. In this experiment, addition of Sn in LTO was done, addition of Sn purposed to increase its capacity and conductivity. Using sol gel method to synthesis LTO, and followed by solid state method, LTO is mixed with Sn using HEBM High energy Ball Mill . Various Sn concentration was added, which are 10 , 20 , 30. Material characterization in this experiment was using SEM EDS, BET, XRD. From BET result, addition of Sn decrease its surface area, SEM EDS result of layered anode shows agglomeration for Sn element and poor particle distribution in layered anode, XRD result shows impurities which is TiO2 Rutile. Half cell battery fabrication was done using Lithium metal as anode and LTO Sn as cathode. Followed by electrochemical performance test, which are EIS, CV, CD. EIS performed before and after CV test, from EIS before CV results, LTO with 30 of Sn has highest conductivity, for EIS after CV, LTO with 20 of Sn has highest conductivity, excessive Sn concentration leads to performance decrease because of pulverization. From CV result, two anodic and two cathodic peaks are shown, which indicates reversible reaction of LTO and Sn, also from CV test, highest capacity is attribute to LTO with 20 of Sn with 168,9 mAh g. From CD result, LTO with 20 of Sn has the most stable performance, 30 of Sn considered as excessive addition of Sn, thus LTO with 30 of Sn has poor electrochemical performance. |