Full Description

Cataloguing Source LibUI ind rda
Content Type text (rdacontent)
Media Type unmediated (rdamedia); computer (rdamedia)
Carrier Type volume (rdacarrier); online resource (rdacarrier)
Physical Description xviii, 99 pages : illustration ; 30 cm + appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI, Lantai 3
 
  •  Availability
  •  Digital Files: 1
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
S66040 14-19-311651451 TERSEDIA
No review available for this collection: 20445264
 Abstract
Tugas akhir ini membahas tentang distribusi Kumaraswamy-geometrik yang merupakan distribusi probabilitas dari peubah acak diskrit yang dibangun dengan menggunakan metode Transformed-Transformer. Distribusi Kumaraswamy dapat membuat distribusi geometrik menjadi lebih fleksibel. Pembahasan meliputi fungsi distribusi, fungsi kepadatan probabilitas, perilaku limit, serta kasus khusus dari distribusi Kumaraswamy-geometrik. Karakteristik-karakteristik dari distribusi Kumaraswamy-geometrik yang meliputi modus, persentil, momen, fungsi pembangkit momen, dan fungsi pembangkit probabilitas juga akan dibahas pada tugas akhir ini. Selanjutnya, Metode Maksimum Likelihood digunakan dalam tugas akhir ini untuk mencari penaksir parameter dari distribusi Kumaraswamy-geometrik. Pada bagian akhir, akan digunakan data tentang jumlah klaim suatu asuransi kendaraan bermotor sebagai ilustrasi penggunaan distribusi Kumaraswamy-geometrik. ......This paper discusses about Kumaraswamy geometric distribution, a distribution of discrete random variable which formed by Transformed Transformer method. Kumaraswamy distribution can cause geometric distribution to be more flexible. This paper studies about distribution function, probability density function, limiting behavior, and special cases of Kumaraswamy geometric distribution. Some properties of Kumaraswamy geometric distribution such as mode, percentile, moments, moment generating function, and probability generating function are studied. Then, Maximum Likelihood method is used to estimate the parameters of Kumaraswamy geometric distribution. Finally, data about number of claims on a motor insurance is used to illustrate the use of Kumaraswamy geometric distribution.