ABSTRAK Wajah merupakan suatu informasi biometrik yang dapat digunakan untuk menentukan identitas seseorang. Ukuran, bentuk, dan struktur wajah seseorang hampir tidak berubah sehingga cenderung stabil dan dapat digunakan sebagai masukan untuk mengenali seseorang.Unjuk kerja sebuah algoritme pengenalan wajah ditentukan oleh akurasi pengenalan wajah dan dinyatakan dalam persen akurasi pengenalan. Semakin besar nilai persen akurasi pengenalan wajah, maka semakin baik algoritme pengenalan wajah tersebut.Akurasi pengenalan wajah sangat dipengaruhi oleh deskriptor ciri yang merepresentasikan sebuah citra wajah dan desain pengklasifikasi. Perancangan deskriptor ciri citra wajah yang robust dipengaruhi oleh beberapa faktor seperti variasi pencahayaan, variasi pose, variasi ekspresi, resolusi citra wajah, jenis kelamin, ras, dan lain-lain.Untuk pengenalan wajah tradisional, biasanya faktor-faktor ini sedapat mungkin diatur agar akurasi pengenalan wajah lebih baik dalam tahap pencocokan. Tetapi untuk kondisi pengenalan wajah yang riil, dimana faktor-faktor di atas tidak dapat dikendalikan, seperti pencahayaan yang sangat kurang, pose yang tidak frontal, resolusi citra yang rendah, ekspresi yang variatif, maka diperlukan deskriptor wajah yang dapat mengakomodir kondisi-kondisi ini agar akurasi pengenalan wajah tetap baik.Disertasi ini mengusulkan pengembangan algoritme SCAN sebagai deskriptor wajah ciri lokal baru untuk meningkatkan akurasi pengenalan wajah yang disebabkan oleh variasi pencahayaan dan resolusi citra wajah yang rendah. Selain itu, suatu algoritme baru untuk menggabungkan Transformasi Fourier Diskrit sebagai deskriptor wajah ciri global dengan salah satu deskriptor wajah ciri lokal yang ada, yaitu LBP/LDiP/LDNP juga diusulkan di dalam disertasi ini untuk mengatasi persoalan pengenalan wajah akibat variasi pose, variasi ekspresi, dan adanya oklusi.Untuk simulasi pengenalan wajah karena variasi pencahayaan yang dilakukan pada Yale Face Database B, didapati deskriptor lokal berbasis teknik SCAN memiliki akurasi pengenalan sebesar 59,56 , dibandingkan PCA 4,74 , LDA 17,48 , LBP 12,37 , dan MLBP 45,33 . Untuk simulasi citra wajah dengan resolusi yang rendah pada database yang sama, algoritme SCAN memiliki akurasi pengenalan 44,34 , sedangkan PCA 20,44 , LDA 35,39 , LBP 3,68 , dan MLBP 44,08 .Untuk simulasi menggunakan database ORL, akurasi pengenalan wajah karena variasi pose, ekspresi, dan adanya oklusi secara acak menggunakan kombinasi DFT dan LBP menggungguli deskriptor global PCA dan LDA serta deskriptor lokal LBP, LDiP,LDNP untuk citra wajah mulai dari jumlah citra latih sebanyak tiga untuk tiap subyek. Selain itu, algoritme penggabungan deskriptor global DFT dengan deskriptor lokal LBP atau LDiP atau LDNP menghindarkan fenomena peaking di dalam penambahan citra latih untuk pengenalan wajah karena variasi pose, ekspresi, dan adanya oklusi secara acak. ABSTRACT A face is an information that attached to a person and always be with the person every time. The size, shape, and structure of a person 39 s face is virtually unchanged, which tends to be stable and can be used as input to recognize a person.The performance of a face recognition algorithm depends on the recognition rate and is usually expressed in percentage. The higher the recognition rate, the better the algorithm. The recognition rate is affected by a feature descriptor and a classifier design. Several factors such as illumination variation, pose variation, expression variation, face image resolution, sex, race, etc, should be considered to design a robust face descriptor.For traditional face recogntion, these factors were well controlled in order to get a better recognition rate at matching phase. However, for real problem face recognition, where these factors were difficult to be controlled, such as for very low intensities, non frontal pose, low resolution face image, diverse expressions, then it is important to carefully design a face descriptor that may accomodate these situations to get a better recognition rate.This dissertation propose the SCAN algorithm as a new local feature descriptor to improve face recognition accuracy caused by intensities variation and low resolution of a facial image. In addition, a new algorithm that combine Fourier Discrete Transform as a global feature descriptors with one of the existing local characteristic descriptors, LBP LDiP LDNP was also proposed in this dissertation to address facial recognition problems due to variation of pose, variation of expression, and the presence of occlusion.For facial recognition simulations due to variations of lighting performed at Yale Face Database B, local SCAN based descriptor has an recognition accuracy of 59.56 , compared to PCA 4.74 , LDA 17.48 , LBP 12 , 37 , and MLBP 45.33 . For simulation of low resolution images on the same database, SCAN algorithm has an accuracy of 44.34 , while PCA 20.44 , LDA 35.39 , LBP 3.68 , and MLBP 44.08 .For simulations using the ORL database, the face recognition accuracy due to variations of random pose, expression, and occlusion using a combination of DFT and LBP outperformed global descriptors PCA and LDA as well as local descriptors LBP, LDiP, LDNP for face images starting from three face images as the training face images for each subject. In addition, the algorithm that combine DFT global descriptor with LBP or LDiP or LDNP as local descriptors avoids peaking phenomena along with the increasing of training images for face recognition due to variations of random pose, expression, and occlusion. |