Penggalian ulasan hotel online pada destinasi wisata unggulan Indonesia dengan pendekatan sentiment analysis dan text summarization = Mining online reviews in Indonesia s priority tourist destinations using sentiment analysis and text summarization approach
Puteri Prameswari;
Isti Surjandari Prajitno, supervisor; Zulkarnain, supervisor; Teuku Yuri M. Zagloel, examiner; Komarudin, examiner
(Fakultas Teknik Universitas Indonesia, 2017)
|
Ulasan hotel online di era modern ini memiliki peran besar mengingat hotel merupakan faktor penentu daya saing sebuah daerah wisata, namun pemanfaatannya masih jarang ditemukan. Berkaitan dengan rencana pemerintah untuk meningkatkan kunjungan wisatawan ke Indonesia, penelitian ini mengaplikasikan text mining terhadap ulasan hotel online untuk menemukan pengetahuan yang bermanfaat dalam membangun sektor perhotelan sebagai bagian integral dalam industri pariwisata. Teknik klasifikasi teks digunakan untuk mendapatkan informasi sentimen yang terkandung dalam kalimat ulasan melalui analisis sentimen, serta teknik klasterisasi pada text summarization untuk menemukan kalimat representatif yang mampu menggambarkan keseluruhan isi ulasan. Percobaan dengan ulasan hotel di Labuan Bajo, Lombok, dan Bali menghasilkan luaran yang memuaskan, di mana akurasi model penggolong klasifikasi sebesar 78 dan Davies-Bouldin Index DBI sebesar 0.071 untuk proses klasterisasi. Luaran penelitian ini diharapkan mampu menggambarkan kondisi hotel di daerah wisata unggulan Indonesia sehingga dapat berkontribusi dalam peningkatan kualitas sektor perhotelan sebagai penunjang industri pariwisata di Indonesia. In this modern era, online hotel reviews have a big role considering the hotel is one the aspects in determining the competitiveness in the tourist area, but its implementation is still rare. Regarding the government 39 s plan to increase tourist arrivals to Indonesia, this research utilized text mining towards online hotel reviews to find useful knowledge in building the hospitality sector as an integral part of the tourism industry. Text classification technique was used to obtain sentiment information contained in review sentences through sentiment analysis, as well as clustering technique as a part of text summarization to find representative sentences that are able to describe the entire contents of the review. Experiments with hotel reviews in Labuan Bajo, Lombok and Bali generated surprising outcomes, where the accuracy of classification model reaches 78 and the Davies Bouldin Index DBI of clustering algorithm strikes 0.071. The output of this research is expected to be able to describe the condition of the hotel in tourist area based on the different level of tourism development so that it can contribute to improving the quality of the hotel industry as well as supporting the tourism industry in Indonesia. |
T48159-Puteri Prameswari.pdf :: Unduh
|
No. Panggil : | T48159 |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Teknik Universitas Indonesia, 2017 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | unmediated ; computer |
Tipe Carrier : | volume ; online resource |
Deskripsi Fisik : | xiv, 105-94 pages : illustration ; 28 cm + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
T48159 | 15-18-403927459 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20454222 |