Telah dirancang prototype motor imagery dengan memanfaatkan perintah sinyal otak yang dihasilkan oleh Electroencephalography EEG . Sinyal EEG digunakan untuk memberikan informasi sinyal motorik. Bentuk unik dari sinyal EEG menggambarkan perintah untuk menggerakkan lengan. Pada kondisi lumpuh sekalipun, informasi motorik pada sinyal EEG masih akan ditemukan saat seseorang membayangkan menggerakkan lengannya. Dalam penelitian ini informasi motorik pada sinyal EEG digunakan sebagai umpan balik dengan menggabungkan 4 elektrode input F3, F4, FC5, FC6 . Akuisisi sinyal EEG menggunakan Emotiv EPOC portable. Probabilistic Neural Network PNN berfungsi sebagai pemrosesan sinyal. Fungsi ini digunakan untuk pengenalan sinyal motor imagery membayangkan gerakan lengan tangan . Karakteristik komputasi yang dilakukan oleh PNN secara parallel mampu mempersingkat waktu pemrosesan sinyal. Hasil pengolahan PNN adalah power maksimum sinyal mu, Power maksimum sinyal beta, frekuensi mu dan frekuensi beta. Kombinasi keempat fitur ini memberikan nilai akurasi yang cukup tinggi. Hasil percobaan menunjukkan bahwa akurasi untuk training rata-rata adalah 85,49 - 91,32 sedangkan nilai untuk testing 82,6 - 87,6 . Alat terapi yang digunakan nBETTER Upper Limb Feedback. Alat terapi akan aktif, bila nilai testing sinyal EEG lebih besar dari 80 . Ke depan, prototype motor imagery ini dapat dikembangkan sebagai alat terapi pasien stroke yang mampu mengurangi ketergantungan pada seorang fisioterapis saat proses terapi. A modeling arms post stroke therapy used command brain signals generated by Electroencephalography EEG has been designed. EEG signals used to provide motorics information. The unique form of signal EEG describe commands to move the limbs. On condition paralyzed, motorics information on the EEG signals will still be found when someone tried to move his limbs. In this research, we aim used the motorics information on the EEG signals as neuro feedback with combine 4 input electrode F3, F4, FC5, FC6 . EEG signal acquisition using the Emotiv EPOC portable. Probabilistic Neural Network PNN function as signal processing. This function was applied to the recognition research of motor imagery EEG signals imagining arms movement . The parallel computing characteristic of PNN not only improved the generation ability for network, but also shorted the operation time. The result of PNN are maximum mu power, maximum beta power, mu frequency and beta frequency that provided value to calculate classification accuracy. The experimental results show that the accuracy for training on average is 85.49 91.32 while the value for testing is 82.6 87.6 . Therapy tool used nBETTER Upper Limb Feedback. The therapeutic tool will be active, when the value of the EEG signal testing is greater than 80 . In the future, this modeling post stroke therapy can be reduced dependency from physiotherapist. |