Klasifikasi keputusan pembelian berdasarkan pola akses pengguna situs web e-commerce dengan menggunakan web usage mining = Classification of purchase decision based on user access pattern in e-commerce website using web usage mining
Surya Yehezki;
Arian Dhini, supervisor; Isti Surjandari Prajitno, examiner; Zulkarnain, examiner
(Fakultas Teknik Universitas Indonesia, 2017)
|
Meningkatnya penggunaan internet di Indonesia memberikan dampak positif bagi perkembangan e-commerce di Indonesia dengan jumlah pengguna internet telah melakukan transaksi elektronik sebesar 63,5 . Dengan meningkatnya jumlah e-commerce B2C di Indonesia, diperlukannya strategi promosi yang tepat untuk mengetahui preferensi dan potensi pembelian untuk setiap konsumen sehingga dapat meningkatkan transaksi e-commerce tersebut. Web usage mining merupakan salah satu metode yang dapat mengolah data web log pengguna situs web e-commerce B2C menjadi informasi yang dapat digunakan untuk mengklasifikasi keputusan pembelian pengguna situs web. Kombinasi kategori produk pembelian yang tinggi oleh pengguna situs web e-commerce memerlukan teknik klasifikasi multi label yang dapat mengklasifikasi kombinasi pembelian secara bersamaan. Metode Label Powerset dengan algoritme Support Vector Machine SVM digunakan untuk mengklasifikasi keputusan pembelian pengguna situs web e-commerce. Seleksi fitur menggunakan Information Gain dan pemilihan parameter dengan menggunakan Grid Search terbukti dapat meningkatkan akurasi klasifikasi. The advance of internet usage in Indonesia has a positive impact on the development of e commerce in Indonesia where 63.5 of internet users have made online transactions. Along with e commerce B2C growth in Indonesia, it is necessary for an effective promotional strategy to know the preferences and potential purchases for each consumer with the result that to increase transactions. Web usage mining is a method having an ability to convert web log data into information used for purchase classification. The high combination of purchasing product categories by users of e commerce website required a multi label classification technique that could classify those combinations. Label Powerset method with Support Vector Machine SVM algorithm was applied to classify e commerce users purchases decision. The proposed feature selection with Information Gain and parameter selection using Grid Search could prove that they had an ability to enhance classification accuracy. |
S67081-Surya Yehezki.pdf :: Unduh
|
No. Panggil : | S67081 |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Teknik Universitas Indonesia, 2017 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | unmediated ; computer |
Tipe Carrier : | volume ; online resource |
Deskripsi Fisik : | xvi, 95 pages : illustration ; 28 cm + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S67081 | 14-19-992161028 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20456250 |