:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Peramalan permintaan produk service parts menggunakan metode single exponential smoothing, croston S method dan artificial neural network = Demand forecasting of car service parts using single exponential smoothing croston S method and artificial neural network

Hutama Dwantara; Inaki Maulida Hakim, supervisor; Fauzia Dianawati, examiner; Arry Rahmawan, examiner; Danu Hadi Syaifullah, examiner (Fakultas Teknik Universitas Indonesia, 2017)

 Abstrak

Perencanaan produksi pada sebuah industri, membutuhkan keputusan yang tepat untuk menentukan jumlah produksi agar dapat memenuhi permintaan konsumen tanpa menghasilkan stok berlebih. Peramalan permintaan merupakan salah satu faktor penting dalam perencanaan produksi yang mampu membantu menghasilkan keputusan produksi yang tepat.
Pada industri otomotif mobil, peramalan yang akurat sangat dibutuhkan untuk mengatasi permintaan yang tidak menentu, khususnya untuk produk service parts, yang pada kenyataannya memiliki permintaan yang tidak menentu dari konsumen dan seringkali membuat perusahaan mobil yang memproduksinya mengalami kerugian karena backorder atau overstock. Artificial neural network ANN merupakan suatu metode berbasis machine learning dengan cara kerja seperti otak manusia yang juga mampu melakukan peramalan untuk data dengan pola non-linier.
Pada penelitian kali ini, dilakukan peramalan dengan objek 10 jenis service parts berbeda dengan menggunakan metode artificial neural network yang kemudian dilakukan perbandingan dengan peramalan metode single exponential smoothing dan croston rsquo;s method untuk dapat membandingkan tingkat akurasi dari peramalan tersebut dan menghasilkan peramalan dengan metode yang paling akurat. Hasil perhitungan pada penelitian ini menunjukkan peramalan metode artifcial neural network mampu menghasilkan peramalan yang lebih akurat dibanding dua metode lain.

Production planning in an industry, required precise decisions to made in order to determine the amount of product that will be produced to fulfill the customer's demand without produce excess stock. Demand forecasting is one of the most important factor in production planning process that able to generate precise production decision.
The automotive industry like car manufacturer, always need an accurate demand forecast serve the uncertain demand of their products, especially the service parts product, that in fact always has uncertainity in it's demand and frequently causing the manufacturer company lose their profit due to tha backorder and overstock occurence. Artificial neural network is a machine learning computation method that could work similarly like human brain that also can forecast a non linier data.
In this research, the data is gained from the demand of 10 car's service parts in a car manufacturer and forecasted with artificial neural network and also two other methods, single exponential smoothing and croston's method to generate a forecasting with the most accurate method. The result of the calculation in this research shows that forecasting with artificial neural networks produce the most accurate forecast for the car's service parts demand.

 File Digital: 1

Shelf
 S67829-Hutama Dwantara.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S67829
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2017
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 75 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S67829 14-19-235861926 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20456268