Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis LSA untuk memberikan penilaian secara objektif terhadap esai berbahasa Indonesia. Data keluaran sistem penilaian esai otomatis, Simple-O, berbasis LSA adalah nilai slice, nilai pad, dan nilai esai tersebut. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan persamaan kata pada sistem penilaian esai otomatis terhadap keakuratan penilaian. Terdapat nilai pad dan slice yang digunakan untuk melihat kemiripan antara teks jawaban mahasiswa dengan teks jawaban referensi. Selain itu, nilai pad dan slice juga akan digunakan sebagai input untuk algoritma Support Vector Machine SVM . Untuk melihat pengaruh penambahan persamaan kata pada database sistem penilaian esai otomatis, Simple-O, maka dilakukan enam skenario pengujian terhadap penggunaan persamaan kata untuk kata kunci. Dalam hal ini, kata kunci merupakan kumpulan kata-kata yang dipilih dari jawaban dimana kata-kata tersebut yang mempunyai nilai. Masing-masing skenario memiliki lima variasi jawaban dengan persentase penggunaan persamaan kata pada kata kunci yang berbeda-beda, mulai dari 100 , 80 , 60 , 40 , 20 , dan 0 . Terdapat tiga nilai yang dianalisis untuk melihat tingkat akurasi penilaian oleh sistem penilaian esai otomatis, Simple-O, yakni nilai esai, nilai pad, dan nilai slice. Hasil dari pengujian dan analisis yang telah dilaksanakan adalah: peningkatan rata-rata akurasi penilaian program Simple-O setelah mengalami penambahan persamaan kata sebesar 18 dari 72 menjadi 90 , rata-rata koefisien korelasi antara penilaian oleh human rater dan program Simple-O bernilai 0.85, serta penurunan rata-rata perolehan nilai pad senilai 1.51 dari 32.35 menjadi 30.84 dan nilai slice senilai 1.01 dari 31.85 menjadi 30.84, sehingga mengindikasikan adanya peningkatan akurasi penilaian oleh program Simple-O setelah mengalami penambahan persamaan kata pada database sistem penilaian esai otomatis, Simple-O. Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis LSA to provide objective assessment of an essay in Bahasa Indonesia. The output data of automated essay grading system with LSA algorithm, Simple O, are pad value, slice value, and the essay rsquo s scores. This thesis will discuss and provide analysis of the influence of synonym importation in automated essay grading system over assessment accuracy. There are pad and slice values, which are used to observe the similarity between students rsquo answers in essay and the reference answers in essay as well. In addition, pad and slice values will also be used as input for Support Vector Machine SVM algorithm. To see the influence and difference of adding word equations into the database of automated essay grading system, Simple O, six testing scenarios are tested against the use of word equations for keywords. In this case, keyword is a collection of selected words from the answers which those words that has a value. Each of the scenario has five answer variations with different percentage of word equations usage on keywords, ranging from 100 , 80 , 60 , 40 , 20 , and 0 . There are three values to be analyzed to see the assessment accuracy level by automated essay grading system, Simple O, they are essay 39 s score, pad values, and slice values. The results of analysis and test that has been done is the average of assessment accuracy of Simple O program after adding word equations increases 18 , from 72 to 90 , the average of correlation coefficient between assessment by human rater and Simple O program is worth 0.85, also the average value of pad decreases 1.51, from 32.35 to 30.84, and the average value of slice decreases 1.01, from 31.85 to 30.84, thus it indicates an improvement of assessment accuracy level results by Simple O program after adding word equations to the database of automated essay grading system, Simple O. |