:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Kriteria seleksi model untuk model linier campuran = Model selection criterion for linear mixed model

Eliza Sakina; Yekti Widyaningsih, supervisor; Sarini Abdullah, supervisor; Titin Siswantining, examiner; Saskya Mary Soemartojo, examiner ([Publisher not identified] , 2018)

 Abstrak

"ABSTRAK
"
Tugas akhir ini bertujuan untuk mencari kriteria seleksi model untuk model linier campuran. Kriteria seleksi model adalah kriteria yang dapat menyeleksi model terbaik dari sehimpunan model kandidat dari suatu data yang sama. Kriteria seleksi model yang dibahas pada tugas akhir ini yaitu kriteria seleksi model yang berdasarkan pada seleksi subset yang bertujuan untuk mendapatkan model kandidat yang paling sesuai untuk memodelkan data. Seleksi subset bekerja berdasarkan nilai discrepancy terkecil. Karena discrepancy tidak dapat dihitung secara langsung, maka ditaksir dengan kriteria seleksi model. Kriteria seleksi model yang digunakan untuk menaksir discrepancy pada tugas akhir ini yaitu Mallow rsquo;s Conceptual Predictive Statistic marginal MCp , dan improved MCp IMCp . Sebagai pembanding dari kedua kriteria seleksi model tersebut akan dibahas juga mengenai Akaike Information Criterion marginal mAIC . Untuk menilai kemampuan ketiga kriteria seleksi model tersebut dalam memilih model, dilakukan simulasi sebanyak 1000 kali. Dua ukuran efek acak yang berbeda dan dua nilai yang berbeda dari korelasi antar pengamatan dari suatu efek acak yang sama diterapkan pada simulasi untuk melihat kondisi kerja optimal dari kriteria seleksi model tersebut. Berdasarkan simulasi yang telah dilakukan diperoleh hasil bahwa kriteria seleksi model MCp, dan IMCp bekerja lebih optimal saat ukuran efek acak kecil dibandingkan saat ukuran efek acak besar. Sementara besarnya korelasi antar pengamatan dalam efek acak yang sama tidak terlalu mempengaruhi kinerja MCp, dan IMCp. mAIC bekerja lebih optimal saat ukuran efek acak kecil dan korelasi antar pengamatan dari efek acak yang sama kecil dibandingkan dengan kondisi yang lain. "
"
"ABSTRACT
"
This final project aims to find the model selection criterion for linear mixed model, that is a criterion that can identify the best model provided a set of candidate models. The criterion discussed in this study is based on a subset selection. The subset selection works by finding the smallest discrepancy value of all candidate models. Since the discrepancy can not be directly calculated, it is estimated by the model selection criterion. The selection criterion that is used in this study is based on Mallow 39 s Conceptual Predictive Statistic Marginal MCp , and Improved MCp IMCp . Akaike Information Criterion marginal mAIC will also be discussed as a comparison to the MCp and IMCp. To assess the performances of the three criteria 1000 simulations were conducted. Two different sizes of random effects and two different values of correlation between observations of a same random effects were design to the simulation. Based on the simulation, MCp, and IMCp performed better for data with small size of random effects compared to that with large random effects. The correlations between observations of the same random effect did not significantly affect MCp 39 s, and IMCp rsquo s performance. mAIC performed better with small size of random effect and small correlations between observations of the same random effects.

 File Digital: 1

Shelf
 S-Eliza Sakina.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2018
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : online resource
Deskripsi Fisik : xxi, 55 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI. Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-409066153 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20466381