Klasifikasi multi-class data intrusion detection system menggunakan support vector machine dengan pemilihan fitur information gain = The application of multi class support vector machine with feature selection using information gain to intrusion detection system data
Jihan Maharani;
Zuherman Rustam, supervisor; Hengki Tasman, examiner; Yudi Satria, examiner; Siti Aminah, examiner
([Publisher not identified]
, 2017)
|
ABSTRAK Saat ini, penyusupan pada suatu sistem jaringan sering sekali terjadi. Gangguan tersebut dapat dicegah atau dideteksi salah satunya dengan menggunakan Intrusion Detection System. Intrusion Detection System sangat diperlukan untuk melindungi jaringan dan menghalangi serangan. Pada penelitian ini, dibahas pengklasifikasian data Intrusion Detection System menggunakan Multi-Class Support Vector Machine dengan pemilihan fitur Information Gain dengan data yang digunakan yaitu KDD-Cup99. Sebagai hasil, akan dibandingkan nilai akurasi model IDS menggunakan Support Vector Machine dengan dan tanpa pemilihan fitur serta percobaan pengaplikasian model untuk klasifikasi pada data unseen dengan model yang sudah didapat dengan menggunakan 8 fitur dan data training sebesar 80 . ABSTRACT Nowadays, the intrusions often occur in a network system. One of ways that Intrusions can be prevented or detected is by using Intrusion Detection System. Intrusion Detection System indispensable to protect the network and to prevent the intrusions. In this paper, the author will discuss about the classification IDS data using Multi Class Support Vector Machine with feature selection using Information Gain and for the data used KDDCup99 Data Set. As a result, it will be compared the accuracy between IDS model using Support Vector Machine with and without feature selection and the application of model has been obtained from the experiment using eight features and 80 data training to unseen data. |
S-Jihan Maharani.pdf :: Unduh
|
No. Panggil : | S-Pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | [Place of publication not identified]: [Publisher not identified], 2017 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xiv, 54 pages ; 30 cm. |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI. Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-Pdf | 14-20-630026642 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20466410 |