:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Sistem identifikasi kandungan antioksidan daun bayam (amaranthus tricolor l.) berbasis citra hiperspektral = The system of identification antioxidant content on (amaranthus tricolor l.) leaves based on hyperspectral images / Mardhiyatna

Mardhiyatna; Adhi Harmoko Saputro, supervisor; Cuk Imawan, supervisor; Dede Djuhana, examiner; Djati Handoko, examiner; Ratna Yuniati, examiner ([Publisher not identified] , 2017)

 Abstrak

ABSTRAK
Pencitraan hiperspektral adalah gabungan teknologi pencitraan dan spektroskopi. Teknologi ini merupakan teknologi telah banyak digunakan untuk penilaian kualitas makanan. Informasi spasial dan spektral pada objek yang diamati dapat diperoleh secara bersamaan dengan menggunakan pencitraan hiperspektral. Dalam penelitian ini, pencitraan hiperspektral pada rentang spektral 400-1000 nm digunakan untuk memprediksi kandungan klorofil total dan karotenoid daun bayam hijau dan merah Amaranthus tricolor L. berdasarkan spektral reflektansi. Data spektral di wilayah ROI pada setiap daun diekstraksi dengan merata-rata semua piksel pada ROI. Kandungan klorofil total dan karotenoid diukur dengan spektrofotometer UV-Vis. Partial Least Square Regression PLSR digunakan untuk membuat model prediksi antara kandungan klorofil total dan karotenoid terukur dan spektrum reflektansi. Koefisien korelasi prediksi rp klorofil total dan karotenoid untuk daun bayam hijau pada panjang gelombang 400-1000 nm diperoleh sebesar 0,91 dan 0,80, sedangkan untuk bayam merah diperoleh rp klorofil total sebesar 0,90 dan rp karotenoid sebesar 0,90. Hasil penelitian menunjukkan bahwa pencitraan hiperspektral dapat digunakan sebagai uji tak rusak untuk memprediksi kandungan total klorofil dan karotenoid. Kata kunci: Pencitraan hiperspektral, Klorofil, Karotenoid, Daun Bayam, PLSR.

ABSTRACT
Hyperspectral imaging is a technology that combines imaging and spectroscopy. This technology is a non destructive technology and used for food quality assessment. Spatial and spectral information on the observed object can be obtained simultaneously by using hyperspectral imaging. In this study, hyperspectral imaging in the spectral range of 400 1000 nm was used for total chlorophyll and carotenoid content prediction of green and red Amaranthus tricolor L. leaves based on reflectance profile. Spectral data in the region of interest ROI of each leaf were extracted by averaging all the pixels in the ROI. The determination of total chlorophyll and carotenoid content was measured using spectrophotometer UV Vis. The Partial Least Squares Regression PLSR was used to create a model prediction between the measured total chlorophyll and carotenoid content and the reflectance spectral. For green Amaranthus tricolor L. leaves, the correlation coefficients r in the full wavelength 400 ndash 1000 nm for predicting total chlorophyll and carotenoid are 0.91 and 0.80. For red Amaranthus tricolor L. leaves, the correlation coefficients r in the full wavelength 400 ndash 1000 nm for predicting total chlorophyll and carotenoid are 0.90 and 0.90. The results show that the hyperspectral imaging could be used as a nondestructive test to predict total chlorophyll and carotenoid content. Keyword Hyperspectral imaging, Total chlorophyll, Carotenoid, Amaranthus tricolor L. Leaves, PLSR

 File Digital: 1

Shelf
 T49791-Mardhiyatna .pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T49791
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2017
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 44 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T49791 15-19-640330454 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20467212