:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pengembangan sistem kendali berbasis backpropagation neural network untuk mengikuti trajectory roket dalam lintasan hovering = Development of a backpropagation based neural network control system for following rocket trajectory in a hovering trajectory

Aji Setyoko; Benyamin Kusumoputro, supervisor; Feri Yusivar, examiner; Aries Subiantoro, examiner (Fakultas Teknik Universitas Indonesia, 2018)

 Abstrak

Berbagai metode pengembangan roket telah dilakukan, namun tidak semua orang bisa mengikuti perkembangannya karena teknologi roket merupakan teknologi rahasia yang pada akhirnya menyebabkan tidak adanya referensi. Kendali roket merupakan tahapan yang paling penting dari pengembangan teknologi roket yang pengembangannya hanya bisa dilakukan jika mempunyai data atau model. Penelitian ini mencoba untuk mendapatkan data penerbangan roket dari simulator pesawat X-Plane kemudian mengembangkan kendali roket menggunakan Neural Network. Konsekuensi yang ditimbulkan karena pemakaian simulator pesawat untuk menerbangkan roket akan dijadikan bahan analisis apakah data yang dihasilkan dari penerbangan roket mempunyai mekanisme fisika layaknya roket.
Pengujian terhadap sistem kendali Neural Network berbasis Direct Inverse Control Open-Loop dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Sistem kendali roket yang dibuat menggunakan metode backpropagation dengan pembatasan pengendalian yaitu hover, sebuah trajectory terbang roket yang mempunyai pengaruh paling besar dalam jangkauan dan arahnya. Dari hasil pengujian ini diketahui bahwa data yang dihasilkan mempunyai dinamika gerak layaknya roket dan sistem kendali hover roket yang dibuat mempunyai kemampuan yang baik.

Various methods of rocket development have been done, but not everyone can follow its development because rocket technology is a secret technology that ultimately leads to no reference Rocket control is the most important stage of development of rocket technology whose development can only be done if it has data or models. In this study trying to get rocket flight data from the X Plane aircraft simulator then develop rocket control using Neural Network. The consequences of using the aircraft simulator to fly the rocket will be used as an analysis material whether the data generated from the rocket flight has a rocket physics mechanism.
Testing of Neural Network control system based on Direct Inverse Control Open Loop is done to know the reliability of control system designed. The rocket control system created using backpropagation method with control limitation is hover, a rocket flying trajectory that has the greatest influence in its range and direction. From the results of this test is known that the resulting data has the dynamics of motion like a rocket and rocket hover control system is made to have good ability.

 File Digital: 1

Shelf
 S-Pdf-Aji Setyoko.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2018
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer recource
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 102 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-104842305 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20472627