:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pengembangan sistem penilaian esai otomatis simple-O dalam bahasa pemrograman C dengan metode learning vector quantization dan penambahan fungsi persamaan kata = Development of automatic essay grading system simple-O in C programming language with learning vector quantization method and word similarity

Adam Arsy Arbani; Anak Agung Putri Ratna, supervisor; Fransiskus Astha Ekadiyanto, examiner; Prima Dewi Purnamasari, examiner (Fakultas Teknik Universitas Indonesia, 2018)

 Abstrak

Departemen Teknik Elektro Universitas Indonesia sejak tahun 2007 telah mengembangkan sistem penilaian esai otomatis yang dinamakan dengan Simple-O. Simple-O menggunakan metode Latent Semantic Analysis LSA untuk membandingkan dua esai dengan cara mengekstrak esai tersebut menjadi matriks. Pengembangan sebelumnya dari Simple-O adalah penambahan Learning Vector Quantization LVQ yang merupakan metode dari artificial neural network. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O terhadap akurasi dari program itu sendiri. Untuk melihat pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O ini, maka dilakukan lima skenario berbeda. Skenario tersebut adalah dengan memvariasikan jumlah keywords yang ada pada esai jawaban menjadi sejumlah 100, 80, 60, dan 20 mendekati jumlah keywords jawaban referensi. Dari hasil pengujian yang telah dilakukan, terdapat skenario yang mengalami penurunan akurasi dan kenaikan akurasi. Jika disimpulkan, rata-rata akurasi program Simple-O setelah penambahan fungsi persamaan kata mengalami peningkatan. Namun, peningkatan rata-rata akurasi yang terjadi tidak terlalu signifikan, peningkatan rata-rata akurasi yang terjadi setelah penambahan fungsi persamaan kata adalah sebesar 5.4 dari 90.9 menjadi 96.3.

Department of Electrical Engineering Universitas Indonesia has developed an automatic essay grading system called Simple O since 2007. Simple O uses the Latent Semantic Analysis LSA method to compare two essays by extracting the essay into matrix. The previous development of Simple O is the addition of Learning Vector Quantization LVQ which is a method of artificial neural network. This research will discuss and provide analysis related to the effect of adding word similarity function to the automatic essay grading system Simple O to the accuracy of the system itself. The experiment will be conducted with five different scenarios by varying the number of keywords in the students answer essay to 100, 80, 60, 40, and 20 of the reference essay keywords. According to the result, there are scenarios that has decreased and increased in accuracy. The average accuracy of the Simple O system after the addition of word similarity function has increased, though not significant. The average increase in accuracy after the addition of word similarity function is 5.4 from 90.9 to 96.3.

 File Digital: 1

Shelf
 S-Adam Arsy Arbani.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2018
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 66 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-591403017 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20473160