:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model prediksi financial distress dengan data mining: suatu studi pada perusahaan non-keuangan yang terdaftar di Bursa Efek Indonesia periode 2011-2016 = Financial distress prediction model with data mining: a study on non-financial listed firms in Indonesia stock exchange for the period 2011-2016

Octria Larasati Siswosoebrotho; Saragih, Ferdinand Dehoutman, supervisor; Bernardus Yuliarto Nugroho, examiner ([Publisher not identified] , 2018)

 Abstrak

ABSTRACT
Financial distress merupakan kondisi kesulitan keuangan yang pada umumnya dialami oleh perusahaan sebelum perusahaan tersebut dapat dinyatakan bangkrut. Dengan menggunakan laporan keuangan, kondisi tersebut pada dasarnya dapat diprediksi. Prediksi dari financial distress sangat berguna bagi manajemen perusahaan untuk melakukan tindakan korektif dalam antisipasinya menghadapi kebangkrutan. Model prediksi dari financial distress sendiri telah berkembang dari penggunaan statistik tradisional hingga artificial intelligence atau machine learning. Penelitian ini bertujuan untuk menganalisis model prediksi financial distress dengan menerapkan machine learning dan membandingkan tiga algoritma dari data mining yaitu decision tree, support vector machine, dan artificial neural network. Sampel dalam penelitian ini menggunakan 115 perusahaan distressed dan 115 perusahaan non-distressed yang aktif di Bursa Efek Indonesia selama periode 2011 hingga 2016 yang diteliti untuk dua tahun yaitu l-t dan t-1. Dalam penelitian ini, dari sebanyak 29 rasio keuangan akan dipilih rasio yang paling sesuai dengan menggunakan feature selection. Hasil dari penelitian menunjukkan bahwa algoritma decision tree dengan tingkat akurasi sebesar 86,37 untuk tahun l-t dan decision tree dengan tingkat akurasi sebesar 88,98 untuk tahun l t-1 memiliki tingkat akurasi yang paling tinggi dalam mengantisipasi financial distress di Indonesia.

ABSTRACT
Financial distress is a condition of financial difficulties that generally a firm would have first go through before the company can be declared bankrupt. By using financial statements, this condition basically could be predicted. Prediction of financial distress is very useful as it could help firms rsquo management to take corrective actions in anticipation of bankruptcy. The predictive model of financial distress itself has evolved from the use of traditional statistics to artificial intelligence or machine learning. This study aims to analyze financial distress prediction model by applying machine learning and comparing three algorithms from data mining namely decision tree, support vector machine, and artificial neural network. The sample in this study used 115 distressed companies and 115 non distressed companies active on the Indonesia Stock Exchange during the period 2011 to 2016 studied for two years ie t and t-1 . In this research, from 29 financial ratios will be selected the most appropriate ratios by using feature selection. The result of this research shows that decision tree algorithm with 86.37 accuracy for year t and decision tree with accuracy of 88.98 for year t-1 has the highest accuracy in anticipating financial distress in Indonesia.

 File Digital: 1

Shelf
 S-pdf-Octria Larasati Siswosoebrotho.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2018
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 152 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-738090120 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20473365