Analisis hasil deteksi tekanan darah tinggi berbasis algoritma backpropagation neural network menggunakan citra retina = Hypertensive retinopathy detection analysis based on backpropagation neural network algorithm using retinal image
Rahmat Arasy;
Basari, supervisor; Benyamin Kusumoputro, examiner; Abdul Halim, examiner
(Universitas Indonesia, 2018)
|
Tekanan darah tinggi pada retina Hypertensive Retinopathy merupakan penyakit yang timbul akibat tingginya tekanan darah yang mengalir pada pembuluh darah retina, mengakibatkan penebalan dinding pembuluh darah, sehingga debit aliran darah pada retina berkurang. Komplikasi yang timbul dari penyakit ini beragam dan membahayakan, mulai dari oklusi pembuluh darah retina, kerusakan saraf mata, bahkan kebutaan. Skripsi ini membahas tentang pendeteksian tekanan darah tinggi pada retina, sehingga dapat digunakan sebagai media untuk membantu diagnosis dan pencegahan penyakit tekanan darah tinggi pada retina Hypertensive Retinopathy . Pendeteksian dilakukan dengan menganalisa gambar retina Fundus Image pasien dengan metode Principal Component Analysis PCA dan Backpropagation Neural Network BNN , sehingga outputnya berupa klasifikasi citra ke salah satu dari dua golongan; yaitu retina normal dan retina dengan tekanan darah tinggi. Dari hasil perancangan diperoleh tingkat akurasi pengujian dan pengujian neural network hingga 85,5 dan 63,6 . Hypertensive Retinopathy is a disease caused by high blood pressure flowing in the retinal blood vessels, resulting in thickening of blood vessel walls and reduced blood flow in the retina. Complications arising from these diseases are diverse and dangerous, ranging from retinal vein occlusion, nerve eye damage, even blindness. This paper discusses the detection of high blood pressure in the retina, so it can be used as a medium to help diagnosis and prevention of Hypertensive Retinopathy disease. Detection is done by analyzing the patient 39 s retinal image Fundus Image with Principal Component Analysis PCA method and Backpropagation Neural Network BNN , so that the output is image classification to one of two classes namely the normal retina and retina with high blood pressure. The result shows that this proposed model have leaning and testing accuracy up to 85,5 and 63,6 . |
S-Pdf-Rahmat Arasy.pdf :: Unduh
|
No. Panggil : | S-Pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Universitas Indonesia, 2018 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer ;; |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xiii, 63 pages : illustration ; 30 cm + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-Pdf | 14-20-506889506 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20473495 |