Full Description

Cataloguing Source LibUI ind rda
Content Type text (rdacontent)
Media Type computer recource (rdamedia)
Carrier Type online resource (rdacarrier)
Physical Description xiii, 46 pages : illustration
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI, Lantai 3
 
  •  Availability
  •  Digital Files: 1
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
S-Pdf 14-20-506404674 TERSEDIA
No review available for this collection: 20473890
 Abstract
Musik memiliki pengaruh yang besar dalam kehidupan manusia. Berbagai macam bunyi dapat memunculkan emosi tertentu dalam pendengarnya. Music Emotion Recognition MER adalah sebuah bidang yang bertujuan untuk mendeteksi emosi dalam sebuah karya musik. Proses untuk pendeteksian ini dilakukan menggunakan sistem-sistem terotomasi yang berkaitan dengan machine learning. MER sudah terbukti dalam menggolongkan berbagai jenis lagu kedalam kategori emosi tertentu dan juga dalam mendeteksi emosi yang terdapat dalam sebuah karya musik menggunakan berbagai macam algoritma machine learning. Pada penelitian ini, dilakukan analisis terhadap hubungan melodi dalam pendeteksian emosi dalam musik dengan mengamati nilai rata-rata not MIDI yang terdapat dalam sebuah lagu dan mengkomputasikan tingkat ketepatan yang dihasilkan dalam memprediksi tingkat emosi dalam karya musik tersebut menggunakan algoritma Support Vector Regression SVR. Sistem MER yang digunakan dalam penelitian ini adalah sistem dimensional yang memiliki nilai arousal dan valence. Hasil dari penelitian adalah bahwa terdapat hubungan antara melodi dengan emosi yang terdapat dalam sebuah lagu, yang dapat dilihat dari selisih data prediksi dan data referensi arousal dan valence. Nilai rata-rata dari selisih pengujian arousal adalah 0.00273 dan standar deviasinya adalah 1.15528, sementara itu nilai rata-rata dari selisih pengujian valence adalah -0.08 dan standar deviasi 0.96. ...... Music has a big influence in human life. A variation of sounds can evoke a certain emotion in the listener. Music Emotion Recognition MER is a field that is geared towards the detection of emotions in music. The process to for emotion detection is by using automated systems which are related with machine learning. MER has been proven capable to categorize various sorts of music by their emotional characteristics and also detecting emotion that is in a certain musical piece using various kinds of machine learning algorithms. In this study, we conduct an analysis towards a relation between the melody of a music piece by examining the average MIDI note value in a song and compute the accuracy rate in predicting the emotion contained in a song using the Support Vector Regression SVR algorithm. The result of this study is that there is a connection between the melody and the emotion that is contained in a song, which can be seen by the difference in the predicition value and the reference value in the arousal dan valence tests. The average of the difference in the arousal test is 0.00273 and the standard deviation is 1.15528, while the average of the difference in the arousal test is 0.08 and the standard deviation is 0.96.