:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Penaksiran parameter pada model regresi B spline menggunakan metode o'sullivan penalized spline = Parameter estimation in B spline regression model using the o'sullivan penalized spline

Ramadhani Fitri; Yekti Widyaningsih, supervisor; Dian Lestari, supervisor; Sarini Abdullah, examiner; Suci Fratama Sari, examiner ([Publisher not identified] , 2018)

 Abstrak

ABSTRAK
Penaksiran parameter dalam model regresi memiliki dua pendekatan yaitu pendekatan regresi parametrik dan pendekatan regresi nonparametrik. Dalam regresi parametrik bentuk dari kurva hubungan antara variabel respon dan variabel prediktor sudah ditentukan berdasarkan plot data, sedangkan dalam regresi nonparametrik bentuk dari kurva tidak diketahui. Salah satu regresi nonparametrik yang dapat digunakan adalah regresi spline. Regresi spline adalah suatu piecewise polynomial yang dihubungkan oleh titik-titik bersama yang disebut dengan knot. Regresi spline yang menggunakan fungsi basis B Spline disebut dengan regresi B Spline. Pada umumnya estimasi parameter regresi B Spline dilakukan dengan menggunakan metode OLS Ordinary Least Square. Namun, dengan metode OLS akan menyebabkan plot taksiran kurva regresi menjadi fluktuatif apabila pemilihan jumlah knot terlalu banyak. Untuk itu diperlukan suatu tambahan kendala berupa penalty yang didalamnya mengandung smoothing parameter sehingga diperoleh taksiran ideal. Metode estimasi parameter ini dikenal dengan metode PLS Penalized Least Square . Metode PLS dengan penalty yang merupakan integral kuadrat derivatif kedua dari taksiran kurva disebut juga dengan metode o rsquo;sullivan penalized spline. Pada penerapan contoh data, didapat 23 buah knot dan smoothing parameter sebesar 0.68.

ABSTRACT
Parameter estimation of regression model has two approaches, that is parametric and nonparametric regression approach. In parametric regression, the shape of regression curve is determined based on scatterplot of dependent variable vs independent variable, whereas in the nonparametric regression, the shape of the curve is unknown. One of the nonparametric regression is spline regression. Spline regression is piecewise polynomials that connected by the knots. Spline regression using B Spline basis function is B Spline regression. In B spline regression, parameter estimation were fitted by OLS Ordinary Least Square method. However, the OLS method will lead the plot of estimated regression curve be fluctuative when using too much knots. Therefore, it needs additional constraint of penalty that contain smoothing parameter to obtain ideal fit result. This parameter estimation method known as PLS Penalized Least Square method. The estimate PLS method used penalty which is the integral of the square of second derivative of the estimate curve that called o 39 sullivan penalized spline method. In the application of sample data, 23 is used knots and the smoothing parameters is 0.68.

 File Digital: 1

Shelf
 S-pdf-Ramadhani Fitri.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2018
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 54 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-562981274 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20474854