Full Description

Cataloguing Source LibUI ind rda
Content Type text (rdacontent)
Media Type unmediated (rdamedia); computer (rdamedia)
Carrier Type volume (rdacarrier); online resource (rdacarrier)
Physical Description x, 82 pages : illustration ; 28 cm + appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI, Lantai 3
 
  •  Availability
  •  Digital Files: 1
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
T51497 15-20-334236355 TERSEDIA
No review available for this collection: 20475878
 Abstract
ABSTRAK
Rencana kebutuhan masing - masing moda transportasi penting dialokasikan secara tepat karena konsumsi bahan bakar tersebut menempati terbesar kedua penggunaan bahan bakar lainnya. Pada penulsan ini, analisa menggunakan beberapa metode peramalan akan kebutuhan setiap perjalanan kereta api dan dievaluasi untuk hasil yang terbaik antara lain : regresi linier berganda, support vector machine SVM dan neural network ANN . Adapun analisis regresi linier memberikan gambaran hubungan linier antara variabel prediksi terhadap variabel terikat. Langkah selanjutnya dipilih parameter pengaruh untuk variabel terikat sebagai variabel prediksi yang mempunyai signifikan pengaruh. Dari ketiga metode tersebutdievaluasi untuk indikasi accuracy of prediction dengan nilai RSME root square mean error terendah. Hasil ditunjukan oleh metode SVM untuk mode prediksi terbaik yang dapat digunakan untuk membuat permintaan waktu akan datang akan konsumsi bahan bakar perjalanan kereta api.
ABSTRACT
Fuel requirement plan needs to be accuraately allocated because it occupes the second largest usage portion in transportation sector. This thesis evaluates and analyzes several prediction methods to forecast fuel requirement of a train trip. The methods are multple linear regression, support vector machine SVM and neural network ANN . Linear regression analysis provides an overview of the linear relationship between indenpendent variable and the predicted variables, i.e. the fuel consumption of the train trip. This method then used to select a subset of independent variable that significantly influence the predicted variables. Moreover the three methods are evaluated their accuracy using RSME root square mean error . The result show the support vector machine is the most appropriate model to predict the fuel consumption of the train trip.