Klasifikasi thalassemia menggunakan support vector machines (SVM) dan multi-layer perceptron (MLP) = Classification of thalassaemia using support vector machines (SVM) and multi-layer perceptron (MLP)
Febrisa Dhewi Ramadhany;
Zuherman Rustam, supervisor; Gatot Fatwanto Hertono, examiner; Arie Wibowo, examiner
([Publisher not identified]
, 2018)
|
ABSTRACT Thalassemia merupakan salah satu penyakit kelainan sel darah merah yang diturunkan oleh orang tua sejak lahir. Thalassemia mengakibatkan protein yang ada di dalam sel darah merah rusak dan tidak mampu berfungsi dengan baik. Hingga saat ini penyakit thalassemia belum dapat disembuhkan, namun penyakit thalassemia dapat dicegah dengan melakukan deteksi dini atau tes prenatal yang dikenal dengan skrining. Pada penelitian ini deteksi dini dilakukan dengan bantuan komputer. Ada beberapa teknik yang telah digunakan untuk mengklasifikasi skrining data thalassemia, salah satu metode yang mampu mengklasifikasi penyakit thalassemia diantaranya adalah Support Vector Machines (SVM) dan Multi-Layer Perceptron (MLP). Data thalassemia yang digunakan diperoleh dari RSAB Harapan Kita, Indonesia. Data tersebut memiliki yang memiiki 10 fitur. Setelah pengujian dilakukan, klasifikasi dengan menggunakan metode SVM menunjukkan hasil akurasi lebih baik sebesar 97,47190988% dengan rata-rata running time 0,145899875 detik. Sedangkan MLP memperoleh hasil akurasi terbaik sebesar 63,91% dengan rata-rata running time 0,009033 detik. Kesimpulan yang diperoleh menunjukkan bahwa teknik klasifikasi menggunakan SVM memiliki akurasi yang lebih baik apabila dibandingkan dengan MLP. ABSTRACT Thalassaemia is a red blood cell disorder that is inherited by parents from birth. Thalassaemia results in damaged proteins in red blood cells and are unable to function properly. Until now, thalassaemia has not been cured, but thalassaemia can be prevented by early detection or prenatal testing known as screening. In this study, early detection is done with the help of a computer. There are several techniques that have been used to classify thalassaemia data screening, one method that is able to classify thalassaemia include Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The thalassaemia data used was obtained from Harapan Kita Hospital, Indonesia. The data has 10 features. After the testing is done, the classification using the SVM method shows better accuracy results of 97.447190988% with an average running time of 0.145899875 seconds. While MLP obtained the best accuracy results of 63.91% with an average running time of 0.009033 seconds. The conclusions obtained showed that the classification technique using SVM had better accuracy compared to MLP. |
S-Febrisa Dhewi Ramadhany.pdf :: Unduh
|
No. Panggil : | S-Pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | [Place of publication not identified]: [Publisher not identified], 2018 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xix, 50 pages : illustration |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-Pdf | 14-20-589640985 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20484720 |