Matriks antiadjacency dan matriks adjacency dari graf roda berarah yang siklik = Antiadjacency matrix and adjacency matrix of directed cyclic wheel graph
Lilik Widiastuti;
Suarsih Utama, supervisor; Siti Aminah, supervisor; Silaban, Denny Riama, examiner; Wed Giyarti, examiner
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018)
|
Sebuah graf roda berarah yang siklik berorder dapat direpresentasikan melalui matriks antidjacency yang dinyatakan dengan dan matriks adjacency yang dinyatakan dengan. Matriks antiadjacency dan adjacency adalah matriks persegi yang entrinya hanya 0 dan 1. Pada matriks adjacency dari suatu graf berarah, entri 1 menyatakan terdapat suatu busur berarah yang menghubungkan simpul ke simpul, sedangkan entri 0 menyatakan tidak ada busur berarah yang menghubungkan simpul ke simpul. Sementara pada matriks antiadjacency, menyatakan hal yang sebaliknya. Secara umum, setiap koefisien pada polinomial karakteristik dari matriks antiadjacency suatu graf berarah terkait dengan lintasan Hamilton, sementara setiap koefisien pada polinomial karakteristik dari matriks adjacency dari suatu graf berarah tidak terkait dengan lintasan Hamilton. Pada penelitian ini dibuktikan bahwa setiap koefisien pada polinomial karakteristik dari matriks maupun matriks memiliki sifat yang sesuai dengan keumuman tersebut. Selain itu matriks antiadjaceny dan adjacency dari graf roda berarah yang siklik, masing-masing memiliki nilai-nilai eigen yang bernilai real dan nilai-nilai eigen yang kompleks. Ternyata juga diperoleh bahwa nilai eigen kompleks sama dengan negatif dari nilai eigen kompleks. A directed cylic wheel graph with order, can be represented by the antiadjacency matrix that denoted by and the adjacency matrix that denoted by. The antiadjacency and the adjacency matrix are square matrices that has entries 0 and 1. In the adjacency matrix of a directed graph, the entry 1 denotes there is an directed edge that connects the vertex to the vertex, while the entry 0 denotes there are no directed edges that connect the vertex to the vertex. While in the antiadjacency matrix, those entries denote the otherwise. In general, every coefficient of characteristic polynomial of antiadjacency matrix of a directed graph has relation with the Hamiltonian path, while every coefficient of characteristic polynomial of adjacency matrix of a directed graph does not. In this research, it is proved that every coefficient of the characteristic polynomial of or has properties that are in accordance with the generality. In addition the antiadjacency and the adjacency matrix of directed cyclic wheel graph, each of them has real and complex eigenvalues. It is also obtained that the complex eigenvalues of equals to the negative of the complex eigenvalues of. |
S-Lilik Widiastuti.pdf :: Unduh
|
No. Panggil : | S-Pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xxi, 51 pages : illustration |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-Pdf | 14-20-424243118 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20485036 |