Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1. Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1. |