:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Metode evaluasi performa personalisasi e-commerce = Performance evaluation method for e-commerce personalization

Muhammad Fadhil Dzulfikar; Sensuse, Dana Indra, supervisor; Aniati Murni Arymurthy, examiner; Wisnu Jatmiko, examiner; Fariz Darari, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2019)

 Abstrak

Urgensi personalisasi e-commerce saat ini didorong oleh beberapa faktor, diantaranya pertumbuhan pasar e-commerce, ekpektasi konsumen, information overload dan keuntungan yang signifikan bagi pengembang. Akan tetapi, menerapkan personalisasi e-commerce yang efektif bukanlah permasalahan yang mudah (non-trivial). Terdapat berbagai macam tantangan dari setiap proses personalisasi, mulai dari  tahap memahami konsumen, menyajikan personalisasi hingga tahap mengevaluasi dampak personalisasi. Saat ini, penelitian pada bidang ilmu komputer banyak memfokuskan studi pada tahap memahami konsumen dan menyajikan personalisasi. Di sisi lain, tahapan terakhir yakni evaluasi belum dieksplor sehingga evaluasi performa personalisasi e-commerce yang ada belum efektif. Beberapa penyebab masalah ini di antaranya adalah tujuan dan metrics yang tidak jelas, evaluasi hanya menggunakan perspektif teknis, dan terbatasnya metode evaluasi performa personalisasi. Untuk itu penelitian ini mencoba untuk mengusulkan metode yang metrics evaluasi dipetakan berdasarkan tujuannya dengan jelas. Selain itu, metode ini juga tidak hanya mengevaluasi dari perspektif teknis, tetapi juga bisnis. Pengembangan metode dilakukan berdasarkan hasil analisis data primer (wawancara) dan data sekunder (literatur). Setelah itu metode diuji engan pendekatan online dan offline menggunakan dataset Amazon dan MovieLens. Kesimpulannya, hasil pengembangan metode ini jika dibandingkan metode Carvalho tidak hanya menggunakan perspektif teknis, tetapi juga bisnis berupa akurasi, cakupan konsumen dan daya tarik produk yang dipersonalisasi.


The urgency of e-commerce personalization is currently driven by several factors, including e-commerce growth, consumer expectations, information overload and significant benefits for enterprise. However, implementing an effective e-commerce personalization is a non-trivial problem. There are several challenges in every personalization process, start from understanding consumers, presenting personalization and evaluating personalization performance. Today, research in computer science focuses on understanding consumers and presenting personalization only. On the other hand, the evaluation process has not been explored. It causes ineffectiveness in the evaluation of e-commerce personalization. The causes of this problem are unclear goals and metrics, technical perspective only, and limited methods of evaluating personalization performance. Therefore, this research proposes a method which evaluation metrics are mapped based on their objectives clearly. In addition, this method also not only evaluates from a technical perspective, but also business perspectives. Method development is based on the analysis results of primary data (interviews) and secondary data (literatures). The proposes method was tested with online and offline approaches using the Amazon dataset and MovieLens. In conclusion, the results of developing this method when compared to the Carvalho’s method have another insight not only technical perspective but also business perspective, including consumer coverage and attractiveness.

 

 File Digital: 1

Shelf
 T52457-Muhammad Fadhil Dzulfikar.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T52457
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xvi, 89 pages: illustration; 30 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T52457 15-19-563235968 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20486028