:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) untuk Ujian Bahasa Jepang dengan Klasifikasi Support Vector Machine (SVM) dan Metode Latent Semantic Analysis (LSA) = Development of Automated Essay Grading (SIMPLE-O) for Japanese Examination Using Support Vector Machine (SVM) Classification and Latent Semantic Analysis (LSA) Method

Aaliyah Kaltsum; Anak Agung Ayu Ratna Dewi, supervisor; Prima Dewi Purnamasari, examiner; Diyanatul Husna, examiner (Fakultas Teknik Universitas Indonesia, 2019)

 Abstrak

ABSTRAK
Pada penelitian ini dilakukan penerapan Support Vector Machine dan LSA
Metode tersebut dibahas dan dipelajari lebih lanjut untuk merancang Sistem Penilaian Esai Otomatis (Simple-O). Simple-O merupakan sistem yang saat ini dikembangkan oleh UI Jurusan Teknik Elektro yang bertujuan untuk menilai esai secara otomatis. Support Vector Machine, yang merupakan algoritma pembelajaran yang diawasi, dipelajari selanjutnya untuk meningkatkan tingkat akurasi dalam Simple-O bersama dengan metode LSA yang digunakan Bahasa pemrograman Python. Dari hasil tes rata-rata tertinggi skor akurasi yang diperoleh sistem sebesar 88.06% dengan masukan kalimat kanji, katakana, hiragana dan nilai TDM siswa jawaban yang mencerminkan frekuensi kemunculan kata kunci dalam dokumen.

ABSTRACT
In this study, the implementation of Support Vector Machine and LSA was carried out These methods are discussed and studied further to design an Essay Assessment System Automatic (Simple-O). Simple-O is a system currently being developed by the UI Department of Electrical Engineering which aims to assess essays automatically. Support Vector Machine, which is a supervised learning algorithm, is learned furthermore to increase the level of accuracy in Simple-O along with the LSA method used Python programming language. From the highest average test results the accuracy score obtained by the system is 88.06% with input the kanji, katakana, hiragana and TDM scores of the students answers that reflect the frequency with which keywords appear in the document.

 File Digital: 1

Shelf
 S-Aaliyah Kaltsum.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2019
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvii, 84 pages ; 30 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI. Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-35554797 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20489247