Pengembangan rekonstruksi citra gelombang mikro berbasis compressive sensing menggunakan total variation = Improvement of compressive sensing based microwave imaging reconstruction using total variation
Izra Halim Razzak;
Mia Rizkinia, supervisor; Anak Agung Putri Ratna, examiner; Basari, examiner
(Fakultas Teknik Universitas Indonesia , 2019)
|
Penelitian ini mengembangkan algoritma rekonstruksi citra gelombang mikro yang menggunakan pendekatan compressive sensing (CS) dimana data yang digunakan bersifat sparse – jumlah data bernilai nol atau yang dapat diabaikan yang ada dalam sebuah set data jauh lebih banyak dibandingkan jumlah data yang tidak bernilai nol. Pengembangan dilakukan dengan menambahkan total variation (TV) sebagai regularisasi spasial dan menggunakan metode alternating direction method of multipliers (ADMM) untuk menyelesaikan masalah optimasi yang dirancang dalam bentuk lagrange. Dengan merekonstruksi phantom simulasi, hasil rekonstruksi yang dilakukan oleh TV berhasil mengungguli algoritma simultaneous algebraic reconstruction technique (SART) dengan selisih nilai SSIM sebesar 0,0179 dan selisih nilai MSE sebesar 0,0119; dan mengungguli algoritma CS tanpa TV dengan selisih nilai SSIM sebesar 0,1699 dan selisih nilai MSE sebesar 0,0444. Nilai ini menunjukkan bahwa tidak hanya TV berhasil diterapkan pada CS, namun juga berhasil meningkatkan performa dan hasil citra rekonstruksi dari algoritma tersebut. This research improves the compressive sensing (CS) based microwave imaging reconstruction algorithm where used data is sparse – the number of zeros or negligible data of a dataset is far beyond the number of non-zero data. The improvement is done by applying total variation (TV) as the spatial regularization and utilizing alternating direction method of multipliers (ADMM) to solve optimization problem in the form of Lagrange equation. By reconstructing simulation phantom, reconstructed image done by TV surpasses the simultaneous algebraic reconstruction technique (SART) with SSIM margin of 0.0179 and MSE margin of 0.0119; and surpasses CS without TV with SSIM margin of 0.1699 and MSE margin of 0.0444. This shows that not only TV is able to be applied to CS, but also manages to improve the performance of CS algorithm and the reconstructed image of said algorithm. |
S-pdf-Izra Halim Razzak.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Teknik Universitas Indonesia , 2019 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | unmediated |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xii, 43 pages : illustration ; appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-22-16109241 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20490579 |