:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Evaluasi kinerja metode brain emotional learning dalam pengklasifikasian data = Performance evaluation of brain emotional learning method for data classification

Raden Arfanto Chalawathal Iman; Abdul Halim, supervisor; Aries Subiantoro, examiner; Wahidin Wahab, examiner (Fakultas Teknik Universitas Indonesia, 2019)

 Abstrak

Dalam perkembangan teknologi saat ini, kemampuan mesin untuk dapat belajar memiliki peranan yang sangat penting. Berbagai upaya telah dilakukan untuk mengembangkan kecerdasan buatan terhadap mesin sehingga mesin dapat melakukan pembelajaran. Salah satu macam pembelajaran mesin (machine learning) adalah dengan Brain Emotional Learning (BEL). BEL merupakan metode pembelajaran mesin yang terinspirasi dari fungsi kerja sistem limbik mamalia yang memiliki kemampuan untuk menyimpan memori, membuat keputusan dan memberi respon emosi. Dalam penerapannya, BEL telah terbukti dapat menyelesaikan berbagai masalah pembelajaran, seperti dalam masalah klasisfikasi, masalah prediksi, dan pengendalian. Pada skripsi ini, akan dilakukan perancangan dengan BEL untuk dapat mengkategorikan data melalui metode pembelajaran supervised learning dan diuji dengan data iris.
Hasil pengujian menunjukkan bahwa BEL dapat digunakan untuk klasifikasi beberapa macam kelas, terdapat hubungan yang tidak linear dari faktor-faktor yang mempengaruhi proses pembelajaran terhadap hasil, konstanta β dan konstanta γ memberikan hasil akurasi rendah ketika keduanya bernilai besar, dan hasil akurasi terbaik sebesar 93,33% untuk jenis data iris. Selain itu, perbandingan dengan paper rujukan menunjukkan bahwa hasil rancangan memberikan hasil yang lebih baik daripada algoritma GDBP MLP pada epoch rendah meskipun hasil rancangan belum sebaik rujukan.

In todays technological development, the ability of machines to be able to learn has a very important role. Various efforts have been made to develop artificial intelligence on the machine so that the machine can do learning. One type of machine learning is with Brain Emotional Learning (BEL). BEL is a machine learning method inspired by the work function of the limbic system of mammals that has the ability to store memory, make decisions and give emotional responses. In its application, BEL has been proven to be able to solve various learning problems, such as problems in classification, prediction problems, and control. In this thesis, BEL will be designed to be able to categorize data through supervised learning methods and tested with iris data.
The test results show that BEL can be used to classify several types of classes, there is a non-linear relationship of the factors that influence the learning process to results, constants and constants give low accuracy results when both are of great value, and the best accuracy results are 93, 33% for iris data types. In addition, the comparison with the reference paper shows that the design results have better results than the MLP GDBP algorithm at the lower epoch even though the design results have not been as good as the references.

 File Digital: 1

Shelf
 S-Raden Arfanto Chalawathal Iman.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2019
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdacarries)
Deskripsi Fisik : xiii, 39 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-03263241 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20490641