Full Description
| Cataloguing Source | LibUI ind rda |
| Content Type | text (rdacontent) |
| Media Type | computer (rdamedia) |
| Carrier Type | online resource (rdacarrier) |
| Physical Description | xi, 61 pages : illustration ; appendix |
| Concise Text | |
| Holding Institution | Universitas Indonesia |
| Location | Perpustakaan UI |
- Availability
- Digital Files: 1
- Review
- Cover
- Abstract
| Call Number | Barcode Number | Availability |
|---|---|---|
| S-pdf | 14-22-01175753 | TERSEDIA |
| No review available for this collection: 20491040 |
Abstract
ABSTRAK
Sistem terkorelasi kuat adalah sistem dimana skala energi untuk interaksi antar partikel tidak lagi dapat diabaikan. Dynamical Mean Field Theory(DMFT) menjadi salah satu metode yang banyak dikenal sebagai
metode ampuh untuk menjelaskan fisika dari sistem terkorelasi kuat. Disini kami mempelajari metode
penyelesaian impuritas yang tersedia di DMFT untuk model Hubbard, model paling sederhana dalam sistem
terkorelasi kuat. Dengan melihat berbagai keterbatasan metode penyelesaian impuritas dengan sumberdaya
numerik yang murah, kami mengembangkan metode penyelesaian impuritas dengan numerik yang murah
lainnya yang dikembangkan dari metode medan rata-rata dengan melibatkan fluktuasi okupasi sebagai kuantitas
numerik. Dengan melihat efek fluktuasi, kami membandingkan hasil tersebut dengan metode penyelesaian
impuritas lainnya, yakni medan rata-rata dan iterasi perturbasi teori yang dipelajari pada keadaan paramagnetik
dan antiferomagnetik. Kami simpulkan bahwa fluktuasi okupasi belum sepenuhnya mampu menjadi metode
penyelesaian impuritas yang baik, namun memberikan hasil yang menarik untuk digunakan sebagai koreksi dari
iterasi perturbasi teori.
ABSTRACT Strongly correlated system is physical system where the interaction among particle cannot be neglected. Dynamical Mean Field Theory(DMFT) becomes one of the established method to explain and calculate physical observable of strongly correlated system. Here we study the impurity solver in DMFT for Hubbard model, the simplest model for strongly correlated system. We realizing that exact impurity solver gives high numerical cost, where approximate impurity solver gives relative low numerical cost. Here we develop another low numerical cost to aim more exact result than approximate method, where we developed it from mean-field method where is the occupation fluctuation is taking into account in the semi-classical sense. We compare this method by another lower numerical impurity solver, i.e mean-field and iterated perturbation theory, where they are studied in restricted case of paramagnetic and unrestricted case of magnetic ordering. We concluded that occupation fluctuation not really giving exact result if we compared to mean-field and iterated perturbation theory, but becomes interesting if we implement occupation fluctuation as iterated perturbation theory correction.
ABSTRACT Strongly correlated system is physical system where the interaction among particle cannot be neglected. Dynamical Mean Field Theory(DMFT) becomes one of the established method to explain and calculate physical observable of strongly correlated system. Here we study the impurity solver in DMFT for Hubbard model, the simplest model for strongly correlated system. We realizing that exact impurity solver gives high numerical cost, where approximate impurity solver gives relative low numerical cost. Here we develop another low numerical cost to aim more exact result than approximate method, where we developed it from mean-field method where is the occupation fluctuation is taking into account in the semi-classical sense. We compare this method by another lower numerical impurity solver, i.e mean-field and iterated perturbation theory, where they are studied in restricted case of paramagnetic and unrestricted case of magnetic ordering. We concluded that occupation fluctuation not really giving exact result if we compared to mean-field and iterated perturbation theory, but becomes interesting if we implement occupation fluctuation as iterated perturbation theory correction.