Deskripsi Lengkap
Bahasa : | ind |
Sumber Pengatalogan : | libUI ind rda |
Tipe Konten : | text (rdacontent) |
Tipe Media : | unmediated (rdamedia); computer (rdamedia) |
Tipe Carrier : | volume (rdacarrier); online resource (rdacarrier) |
Deskripsi Fisik : | xxi, 74 pages : illustration ; 28 cm + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
- Ketersediaan
- File Digital: 1
- Ulasan
- Sampul
- Abstrak
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
T53940 | 15-21-610634918 | TERSEDIA |
Tidak ada ulasan pada koleksi ini: 20492953 |
Abstrak
Jika biaya kerugian yang disebabkan peristiwa kebakaran dapat diprediksi dengan big-structured data mengenai faktor-faktor penyebab kebakaran yang sudah ada maka penentuan polis asuransi kebakaran di perusahaan asuransi menjadi lebih efektif dan efisien. Pada tesis ini, model Deep Neural Network (DNN) digunakan untuk memprediksi biaya kerugian akibat kebakaran untuk polis asuransi, kemudian membandingkan akurasi model DNN dan NN. Dari hasil penelitian didapatkan bahwa akurasi (MSE) model DNN optimal sebesar 0,04217331959 ±0,63924424e-15, sedangkan akurasi (MSE) model NN yang optimal sebesar 0,04217335183± 0,64079999e-15. Hal tersebut menunjukan bahwa model DNN sebanding dengan model NN dalam memprediksi biaya kerugian pada asuransi kebakaran dengan data yang digunakan merupakan big-structured data. Selain itu, running time program untuk model NN lebih cepat dibandingkan dengan model DNN.
If the loss costs caused by fire events can be predicted with big structured data regarding the factors that cause the fires that already exist, determining fire insurance policies in the insurance companies can be more effective and efficient. In this study, the Deep Neural Network (DNN) model is used to predict the loss cost due to fire for insurance policies, then compare the accuracy of the DNN and NN models. The results showed that the accuracy (MSE) of the optimal DNN model was 0.04217331959 ± 0.63924424e-15. While the optimal NN model was 0.04217335183 ± 0.64079999e-15. This shows that the DNN model is comparable with the NN model in predicting the loss cost in fire insurance with the data used being big structured data. In addition, the running time of the program for the NN model is faster than the DNN model.
If the loss costs caused by fire events can be predicted with big structured data regarding the factors that cause the fires that already exist, determining fire insurance policies in the insurance companies can be more effective and efficient. In this study, the Deep Neural Network (DNN) model is used to predict the loss cost due to fire for insurance policies, then compare the accuracy of the DNN and NN models. The results showed that the accuracy (MSE) of the optimal DNN model was 0.04217331959 ± 0.63924424e-15. While the optimal NN model was 0.04217335183 ± 0.64079999e-15. This shows that the DNN model is comparable with the NN model in predicting the loss cost in fire insurance with the data used being big structured data. In addition, the running time of the program for the NN model is faster than the DNN model.