Alzheimer Disease (AD) merupakan salah satu gangguan saraf yang menyerang otak manusia yang lambat namun progresif yang menyebabkan masalah serius pada otak, sikap, dan masalah percakapan pasien. Penyakit itu sampai sekarang belum ada obatnya tetapi perkembangannya bisa dihambat. Untuk membantu menghambat perkembangan AD, analisis studi tentang Alzheimers diperlukan. Dalam penelitian ini kami bertujuan menganalisis data microarray penyakit AD dengan menyeleksi gen yang signifikan pada enam daerah otak manusia untuk mengidentifikasi adanya kandidat biomarker AD dengan pendekatan metode sparse biclustering berbasis factor analysis. Dengan metode biclustering ini kami menggelompokkan secara simultan baris yang mewakili gen dan kolom yang mewakili sampel, sehingga terbentuklah bicluster-bicluster. Model metode kami adalah multiplikatif generative yaitu metode yang menguraikan matriks menjadi dua faktor matriks sparse plus noise. Dengan analisis gen hasil bicluster dengan gen ontology (GO) maka diketahui fungsi biologi bicluster tersebut. Hasil dari sparse biclustering berbasis factor analysis akhirnya terdeteksi kandidat biomarker AD di dua daerah otak yaitu EC dan SFG. Hasil dari penelitian ini diharapkan dapat memberikan masukan buat kemajuan analisis pengembangan obat dan diagnosis Alzheimer di bidang medis.
Alzheimer's Disease (AD) is one of the nervous disorders that attacks the slow but progressive human brain that causes serious problems in the brain, attitudes, and problems with patient conversation. There is no cure for the disease but the development can be inhibited. To help inhibit AD development, an analysis of studies on Alzheimers is needed. In this study we aimed to analyze AD microarray data by selecting genes that were significant in six regions of the human brain to identify candidates for biomarker AD with a factor analysis sparse biclustering method approach. With this biclustering method, we group together the rows representing genes and columns that represent the sample, so that bicluster-bterluster is formed. Our model method is a generative multiplicative method that describes the matrix into two sparse plus noise matrix factors. By analyzing the gene produced by bicluster with the ontology (GO) gene, the biological function of the bicluster is known. The results from sparse biclustering based factor analysis finally detected AD biomarker candidates in two brain regions namely EC and SFG. The results of this study are expected to provide input for the progress of the analysis of drug development and Alzheimer`s diagnosis in the medical field. |