Analisis imputasi missing value menggunakan fractional hot deck pada data numerik = Missing value analysis of numerical data using fractional hot deck imputation
Samuel Zico Christopher;
Titin Siswantining, supervisor; Devvi Sarwinda, supervisor; Bevina Desjwiandra Handari, examiner; Ida Fithriani, examiner
(Universitas Indonesia, 2019)
|
Salah satu metode yang populer untuk mengatasi missing value dalam sebuah survei adalah metode imputasi. Imputasi adalah solusi untuk mengganti suatu missing value dengan suatu nilai pengganti yang didapatkan dari teknik khusus tertentu, misalnya imputasi menggunakan nilai mean, nilai median, dan lain sebagainya. Pada skripsi dibahas suatu teknik imputasi yang menggabungankan dua macam teknik imputasi lain, yakni imputasi fractional dan imputasi hot deck. Imputasi fractional adalah imputasi yang punya kelebihan dalam meminimumkan suatu variansi dalam suatu data dikarenakan nilai imputasi yang dihasilkan berasal dari data set dalam survei itu sendiri, namun kekurangannya adalah bahwa nilai imputasi dari teknik fractional akan membuat jumlah observasi menjadi mengembang. Oleh karena masalah pengembangan data set yang dihasilkan teknik fractional tersebut, imputasi hot deck menjadi solusi untuk membatasi masalah jumlah observasi yang dihasilkan dengan membatasi calon nilai imputasi (donor) untuk suatu nilai hilang. Imputasi yang menggabungkan teknik imputasi fractional dan hot deck akan dikenal dengan nama imputasi fractional hot deck dengan sifat yang mirip dengan imputasi fractional , namun observasi yang dihasilkan lebih sedikit. One of the most popular solution of missing value is imputation in a survey is imputation. Imputation is a solution to replace missing value with imputed value from a particular technique, such as mean value, median value, etc. This Thesis specifically discuss about technique that fuse fractional imputation technique and hot deck imputation technique. Fractional imputation is popular because this imputation tends to produce less variance compare to other methods. Unfortunately this method will extend the number of observations. Because fractional imputation tends to extend the number of observations, sampling becomes a solution to produce less observation. Sampling limits the numbers of imputed values (donor) in the observations that adopts hot deck imputation nature. The imputation that fuse fractional imputation and hot deck imputation is known as fractional hot deck, and produce a data set that have similar property to fractional imputation, but less observations. |
S-Pdf-Samuel Zico Christopher.pdf :: Unduh
|
No. Panggil : | S-Pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Universitas Indonesia, 2019 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xix, 135 pages : illustrations ; 28 cm + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI, Lantai 3 |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-Pdf | 14-19-362065933 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20495118 |