:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Peramalan penjualan mobil segmen b2b dengan metode regresi linear berganda, jaringan syaraf tiruan dan jaringan syaraf tiruan-algoritma genetika = Sales forecasting of automobile in b2b segments using multi linear regression, artificial neural network and artificial neural networks-genetic algorithm.

Muhammad Agung Nugraha; Farizal, supervisor; Djoko Sihono Gabriel, supervisor; Rahmat Nurcahyo, examiner; M. Dachyar, examiner (Fakultas Teknik Universitas Indonesia, 2020)

 Abstrak

Penelitian ini bertujuan untuk membuat model peramalan yang efektif dalam meramalkan penjualan produk mobil dalam segmen B2B (Business to Business) agar didapatkan estimasi penjualan produk di masa mendatang. Peneilitian ini menggunakan regresi linear berganda dan jaringan syaraf tiruan yang dioptimasi dengan algoritma genetika.  Faktor peramalan penjualan mobil pada umumnya meliputi penjualan mobil secara nasional, Indeks Harga konsumen, Indeks Kepercayaan Konsumen, Laju Inflasi, Produk Domestik Bruto (GDP), dan  Harga Bahan Bakar Minyak (BBM). Penulis juga telah mendapatkan faktor yang berpengaruh dalam penjualan segmen B2B dengan menyebarkan survey (kuesioner) kepada 102 orang DMU (Decision Making Unit) yang memiliki keputusan dalam pembelanjaan mobil di perusahaan mereka. Kemudian hasil scoring dari kuesioner tersebut kami bobotkan pada data training dan simulasi pada Jaringan Syaraf Tiruan. Hasil penelitian ini menunjukkan bahwa Jaringan Syaraf Tiruan yang dioptimasi  dengan Algoritma Genetika dengan 18 Variabel dapat meningkatkan akurasi peramalan penjualan mobil segmen B2B dengan error 1,3503%, jika dibandingkan nilai error pada Jaringan Syaraf Tiruan biasa sebesar 4,173% dan Regresi Linear Berganda sebesar 17,68%.

ABSTRACT
This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business-to-Business) in order to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Car sales forecasting factors generally include National car sales, Consumer Price Index, Consumer Confidence Index, Inflation Rate, Gross Domestic Product (GDP), and Gasoline Price. The author has also obtained an influential factor in the sale of B2B segments by distributing surveys (questionnaires) to 102 DMU (Decision Making Unit) who have a decision in car purchasing at their company. Then the results of the scoring from the questionnaire are weighted to the training and simulation data on the Artificial Neural Network. The results of this study indicate that the Artificial Neural Network optimized with Genetic Algorithm can improve the accuracy of forecasting B2B segment car sales with an error of 1.3503%, when compared to the error value in the usual Artificial Neural Network of 4.173% and Multiple Linear Regression of 17.68 %.

 File Digital: 1

Shelf
 T54561-Muhammad Agung Nugraha.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T54561
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Jakarta: Fakultas Teknik Universitas Indonesia, 2020
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resources
Deskripsi Fisik : xvii, 115 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T54561 15-21-679122151 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20501760