:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Sistem keamanan rumah dan akses pintu otomatis berbasis Face Recognition via Raspberry Pi = Home security system and automatic door access based on Face Recognition via Raspberry Pi

Qurratu Aini Hasby; Yohan Suryanto, supervisor; Kalamullah Ramli, examiner; Diyanatul Husna, examiner (Fakultas Teknik Universitas Indonesia, 2020)

 Abstrak

Penelitian dilakukan untuk mengembangkan sistem keamanan rumah dengan webcam yang sudah ada saat ini. Sistem keamanan saat ini menggunakan webcam hanya untuk merekam dan menyimpan kejadian dalam bentuk video file. Hal tersebut dirasa kurang cukup aman dikarenakan saat kejadian berlangsung seperti perampokan tidak ada notifikasi kepada pemilik rumah. Maka pada penelitian ini ditambahkan sebuah fitur pada sistem untuk mendeteksi wajah penghuni rumah dan akan memberikan notifikasi ketika ada wajah yang tidak dikenal. Sistem ini juga akan digabungkan dengan akses pintu otomatis menggunakan solenoid door lock. Metode yang digunakan adalah Deep Learning Matric untuk implementasi pada face recognition yang digunakan untuk akses kunci pintu rumah.
Hasil yang didapatkan dari pengujian sistem cukup baik, dimana sistem dapat membedakan penghuni rumah dengan orang asing dengan beberapa kriteria pengujian, diantaranya dengan pengujian jarak webcam dengan orang pada siang sekitar pukul 12.00 sampai 13.00 dan malam hari sekitar pukul 19.00 sampai 20.00 dengan menghadap kearah webcam, pengujian banyaknya wajah yang terdeteksi webcam dalam satu frame, dan notifikasi kepada penghuni rumah. Berdasarkan hasil pengujian dan analisis, banyaknya wajah yang tertangkap bisa lebih dari 3 orang dan untuk persentase akurasi pada pengujian siang hari didapatkan sebesar 91.11% sedangkan pada malam hari sebesar 80%. Dari persentase yang didapatkan, pendeteksian pada siang hari lebih baik dan akurat dibandingkan pada malam hari dikarenakan intensitas cahaya yang mempengaruhi kerja dari algoritma face recognition.

The study was conducted to develop a home security system with a webcam that already exists today. The current security system only uses the camera to record and save events in the form of video files. This is not enough safe because when the incident took place such as a robbery there was no notification to the homeowner. Therefore, in this study added some feature for a system to recognize faces of homeowner and will provide notifications when there are faces that are not known. This system will also be combined with automatic door access using solenoid door lock. The method used is the Deep Learning Matric for the implementation of face recognition which will used for door lock access.
The results obtained from the testing of the system are quite good where the system can distinguish between homeowner and strangers with several testing criteria, including testing the distance of the camera with people at noon around 12:00 to 13:00 and the night around 19:00 to 20:00 by facing the camera, testing the number of faces detected by cameras, and notifications to residents. Based on the results of testing and analysis, many faces can be caught more than 3 people and for the percentage of accurated in daytime testing obtained by 91.11% while at night by 80%. From the percentage obtained, the detection during the day is better and more accurate than at night due to the light intensity that affects the work of the face recognition algorithm.

 File Digital: 1

Shelf
 S-pdf-Qurratu Aini Hasby.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2020
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xvi, 60 pages: illustrations; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-pdf 14-21-017190085 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20504613