:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perancangan model sistem dinamis untuk mengurangi faktor praktik korupsi pada Pengadaan publik di Indonesia untuk mendukung program Komisi Pemberantasan Korupsi (KPK) = System dynamic model to minimize corruption practice of public procurement to support the Corruption Eradication Commission (KPK) in Indonesia

Meidisyah; M. Dachyar, supervisor; Inaki Maulida Hakim, examiner; Maya Arlini Puspasari, examiner (Fakultas Teknik Universitas Indonesia, 2020)

 Abstrak

Korupsi tidak hanya disebabkan oleh satu faktor tetapi merupakan hasil dari interaksi banyak faktor. Praktik korupsi menimbulkan kerugian dan memperlambat proses pemulihan ekonomi di Indonesia. Pengadaan publik adalah salah satu aktivitas pemerintah yang rentan terhadap korupsi.
Penelitian ini bertujuan untuk merancang model sistem dinamis yang memberikan gambaran interaksi faktor dan umpan balik yang mempengaruhi praktik korupsi di pengadaan publik serta menambahkan faktor pencegahan ke dalam model sistem dinamis baru dalam rangka pencegahan korupsi. Pengumpulan data awal dilakukan dengan menggunakan metode information retrieval & extraction berbasis web (web scrapping) serta named entity recognition (NER) yang menghasilkan basis data kasus korupsi di Indonesia sebagai dasar untuk menetukan sektor pemerintahan dengan tingkat kerentanan tinggi terhadap praktik korupsi.
Model kebijakan terdiri dari skenario 1,2 dan 3 yaitu integrasi dokumen antara aplikasi SPSE dengan kemeterian/ lembaga/ direktorat, pengawasan melalui S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) dan mendesain hukum organisasi pengadaan proyek konstruksi yang berstruktur lebih horizontal. Dari 3 skenario kebijakan tersebut, skenario 1 integrasi dokumen antara aplikasi SPSE dengan kemeterian/ lembaga/ direktorat model terpilih menjadi solusi pengurangan korupsi di pengadaan barang/jasa proyek konstruksi. Solusi ini menghasilkan perhitungan jumlah kasus korupsi per tahun terkecil dan pemberantasan korupsi per tahun terbanyak dalam peniliain tingkat korupsi pengadaan barang/jasa proyek konstruksi di Indonesia.

Corruption is not only caused by one factor but is the result of the interaction of many factors. Corruption practices cause losses and slow down the process of economic recovery in Indonesia. Public procurement is one of the government activities that is vulnerable to corruption.
This study aims to design a dynamic system model that provides an overview of the interaction of factors and feedback that affect corrupt practices in public procurement as well as adding prevention factors to the new dynamic system model in order to prevent corruption. Preliminary data collection is done using web-based information retrieval & extraction (web scrapping) and named entity recognition (NER) methods which produce a database of corruption cases in Indonesia as a basis for determining government sectors with high levels of vulnerability to corrupt practices.
The policy model consists of scenarios 1,2 and 3, which are integration documents between the SPSE application and the ministries / institutions / directorates, supervision through S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) and designing procurement projects that have a more horizontal structure. Of the 3 policy scenarios, scenario 1 documents integration between the SPSE application and the selected model / agency / directorate model is the solution in implementing corruption in the procurement of construction project goods / services. This solution results in the calculation of the number of corruption per year and the most eradication corruption per year in assessing the level of corruption in the procurement of goods / services for construction projects in Indonesia.Corruption is not only caused by one factor but is the result of the interaction of many factors. Corruption practices cause losses and slow down the process of economic recovery in Indonesia. Public procurement is one of the government activities that is vulnerable to corruption.
This study aims to design a dynamic system model that provides an overview of the interaction of factors and feedback that affect corrupt practices in public procurement as well as adding prevention factors to the new dynamic system model in order to prevent corruption. Preliminary data collection is done using web-based information retrieval & extraction (web scrapping) and named entity recognition (NER) methods which produce a database of corruption cases in Indonesia as a basis for determining government sectors with high levels of vulnerability to corrupt practices.
The policy model consists of scenarios 1,2 and 3, which are integration documents between the SPSE application and the ministries / institutions / directorates, supervision through S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) and designing procurement projects that have a more horizontal structure. Of the 3 policy scenarios, scenario 1 documents integration between the SPSE application and the selected model / agency / directorate model is the solution in implementing corruption in the procurement of construction project goods / services. This solution results in the calculation of the number of corruption per year and the most eradication corruption per year in assessing the level of corruption in the procurement of goods / services for construction projects in Indonesia.

 File Digital: 1

Shelf
 S-Meidisyah.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2020
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 72 pages: illustration; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-22-92828439 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20504771