Pipa transmisi adalah cara teraman dan paling efektif untuk mengangkut gas alam dalam jumlah besar dalam jarak jauh. Meskipun transportasi menggunakan pipa adalah yang paling aman, kegagalan pipa transmisi dapat menyebabkan kerusakan, kerugian finansial, dan cedera. Kegagalan pipa perlu diprediksi untuk untuk menentukan prioritas pemeliharaan pipa sebagai salah satu strategi membuat jadwal pemeliharaan prefentif yang tepat sasaran dan efisien agar pipa dapat diperbarui atau direhabilitasi pipa sebelum terjadi kegagalan. Metode yang ditawarkan pada studi ini adalah machine learning, dimana metode merupakan bagian dari insiatif transformasi digital (Hajisadeh, 2019). Model dikembangkan berdasarkan data kegagalan historis dari jaringan pipa transmisi gas darat sekitar 2010-2020 yang dirilis oleh Departemen Transportasi AS dengan karakteristik data yang tidak terstruktur dan kompleks. Proses pembelajaran mesin dapat dibagi menjadi beberapa langkah: pra-pemrosesan data, pelatihan model, pengujian model, pengukuran kinerja, dan prediksi kegagalan. Pengembangan model pada studi ini dilakukan menggunakan dua algoritma yaitu regresi logistik dan random forest. Pola perilaku dari faktor-faktor yang paling berpengaruh adalah usia dan panjang segmen pipa meiliki korelasi positif terhadap kegagalan pipa. Kedalaman pipa, ketebalan, dan diameter pipa memiliki korelasi negatif. Kegagalan pipa paling sering terjadi pada pipa dengan class location 1 dan class location 4, pipa yang ditempatkan di bawah tanah, serta pipa dengan tipe pelapis coal tar. Hasil pengembangan model menggunakan machine learning menunjukan hasil performa model akurasi prediksi 0.949 dan AUC 0.950 untuk model dengan algoritma regresi logistik. Sedangkan akurasi prediksi 0.913 dan AUC 0.916 untuk model dengan algoritma random forest. Berdasrkan hasil uji performa kita dapat menyimpulkan bahwa machine learning adalah metode yang efektif untuk memprediksi kegagalan pipa. Berdasarkan model yang dilatih pada dataset nyata pipa transmisi gas, hasil prediksi pada studi kasus dapat menghindari 29% dari kegagalan pipa pada 2025, 53% kegagalan pipa pada tahun 2030, dan 64% pada tahun 2035. Transmission pipe is the safest and most effective way to transport large amounts of natural gas over long distances. Although transportation using pipelines is the safest, transmission pipeline failures can cause damage, financial losses, and injuries. Pipeline failures need to be predicted to determine the priority of pipeline maintenance as one of the strategies to create a schedule of maintenance targets that is right on target and efficient so that the pipeline can be rehabilitated before a failure occur. The method offered in this study is machine learning, where the method is part of the digital transformation initiative (Hajisadeh, 2019). The model was developed based on historical failure data from the onshore gas transmission pipeline around 2010-2020 released by the US Department of Transportation with unstructured and complex data characteristics. The machine learning process can be divided into several steps: data pre-processing, model training, model testing, performance measurement, and failure prediction. The development of the model in this study was carried out using two algorithms namely logistic regression and random forest. The correaltion of the factors that most influence the failure of an onshore gas transmission pipeline is the age and length of the pipe segment has a positive correlation with pipe failure. Depth of cover, thickness, and diameter of pipes have a negative correlation with pipe failures. Pipe failures most often occur in pipes with class location 1 and class location 4, undersoil, and pipes with coal tar coating types. The results of the development of the model using machine learning showed the results of the model performance prediction accuracy is 0.949 and AUC is 0.950 for models with logistic regression algorithms. Whereas the accuracy of prediction is 0.913 and AUC is 0.916 for models using the random forest algorithm. Based on the results of performance tests we can conclude that machine learning is an effective method for predicting pipe failures. Based on the model trained on a real dataset of gas transmission pipelines, the prediction results in case studies can avoid 29% of pipe failures in 2025, 53% of pipe failures in 2030, and 64% in 2035. |