Prediksi Jumlah Penumpang Pesawat pada Maskapai Penerbangan di Indonesia dengan Metode ARIMA dan Artificial Neural Networks = Airline Passenger Forecasting in Indonesian Airline using ARIMA and Artificial Neural Networks Approaches
Sameera Ramadhani;
Arian Dhini, supervisor; Romadhoni Ardi, examiner; Komarudin, examiner
(Fakultas Teknik Universitas Indonesia, 2020)
|
Ketidakpastian jumlah penumpang pesawat meningkat karena kenaikan tren penggunaan pesawat sebagai pilihan moda transportasi di Indonesia beberapa tahun kebelakang. Hal ini menyebabkan dibutuhkannya kemampuan untuk mengakomodasi kenaikan tersebut bagi perusahaan penerbangan untuk mempertahankan posisinya dalam industri. Pembuatan strategi sangat dipengaruhi oleh keakuratan prediksi. Karena itu, model prediksi yang akurat sangat dibutuhkan. Penelitian ini menggunakan metode neural networks yang telah teruji sebagai metode berbasis data mining dengan hasil akurasi lebih tinggi dibandingkan dengan metode tradisional untuk membuat model terbaik untuk memprediksi jumlah penumpang pesawa. Sebagai perbandingan, metode Autoregressive Integrated Moving average (ARIMA) akan digunakan. Objek dari penelitian ini adalah data jumlah penumpang bulanan dari salah satu perusahaan penerbangan di Indonesia, berfokus pada dua rute utama dengan keuntungan terbesar yaitu rute Jakarta-Yogyakarta (CGK-JOG) dan rute Jakarta-Singapura (CGK-SIN), dimana masing-masing rute ini merepresentasikan rute domestik dan rute internasional. Prediksi selama 12 periode ke depan akan dilakukan dengan model terbaik dari masing-masing metode. Nilai mean absolute percentage error (MAPE) akan dibandingkan dan Theil’s U Statistic akan dilihat untuk menilai apakah model sudah representatif. Pada kedua rute, dapat dilihat bahwa metode neural networks menghasilkan nilai error yang lebih baik daripada ARIMA dengan nilai MAPE sebesar 1.29% untuk rute CGK-JOG dan 1.66% untuk rute CGK-SIN. Demand uncertainty has been increasing as a result of the rising trend of using airplanes as a transportation mode option in Indonesia over the years. This condition results in the need for the ability to accommodate the rise for airline companies to withstand within the industry. Strategy formulation is highly determined by the forecast accuracy. Thus, accurate forecasting models are highly required. In this study, neural network is proposed to create the best-fitted model to predict future values. Neural network is a data mining-based approach that has already been tested to result in more accurate predictions than traditional methods. As a comparison with the traditional model, Autoregressive Integrated Moving Average (ARIMA) model is applied. This study used monthly passenger data from Indonesian airlines, focused on Jakarta-Yogyakarta (CGK-JOG) and Jakarta-Singapore (CGK-SIN) routes which are the representatives of the most profitable route for both domestic and international flight. MAPE of both methods were then compared and Theil’s U Statistic were calculated to see whether the models are suitable. Forecasted future demand for the next 12 months were calculated, where in both routes neural network produced better value than ARIMA with MAPE of 1.29% for CGK-JOG route and 1.66% for CGK-SIN route. |
S-Sameera Ramadhani.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Teknik Universitas Indonesia, 2020 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xiii, 59 pages : illustration |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-21-14478490 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20504845 |