Kemacetan merupakan salah satu masalah yang belum bisa terselesaikan di kota-kota besar di Indonesia. Salah satu cara untuk mengatasi masalah ini, yaitu dengan memanfaatkan teknologi yang dapat memantau lalu lintas secara otomatis, agar dapat dimonitor dan dianalisis untuk pengembangan fasilitas serta kebijakan guna menyelesaikan masalah ini. Teknologi yang dapat diterapkan untuk masalah ini, yaitu teknologi image processing yang dikolaborasikan dengan machine learning dan dengan bantuan library OpenCV. Pendeteksian objek menggunakan MobileNet-SSD dan Caffe model, objek yang dideteksi merupakan kendaraan yang melintas di jalan, pengambilan input menggunakan kamera CCTV yang diakses oleh publik. Kecepatan, performa, akurasi, dan kepadatan jalanan merupakan variabel yang dianalisis pada penulisan ini. Hasil dari pendeteksian memiliki akurasi yang tidak cukup baik sekitar 43% untuk keseluruhan, dan 68% untuk pendeteksian mobil. Terdapat penambahan fitur pada penelitian ini, yaitu pendeteksian motor yang memiliki akurasi 51% Traffic jam is one of many problems that cannot be solved in various cities in Indonesia. One way to overcome this problem is to use technology that can monitor traffic automatically, so that traffic conditions can be monitored, and analyzed for the development of facilities and policies to solve this problem. One of the technologies that can be applied to this problem is image processing technology in collaboration with machine learning, and OpenCV. This research use Mobilenet-SSD and Caffe models for objects detection, objects detected are vehicles that cross the road, input is taken from CCTV cameras that can accessed by public. Speed, performance, accuracy, and road density are the variables analyzed in this paper. The results of the detection have an accuracy that is not good enough only about 43% for the whole detection, and 68% for the detection of the car, and 51% for the detection of the motorcycle |