Mengemudi dalam keadaan mengantuk merupakan salah satu bentuk kelalaian dalam berkendara yang dapat membahayakan. Oleh karena itu, penelitian ini ditujukan untuk merancang dan membangun sebuah sistem pendeteksi kantuk yang mampu memperingatkan pengemudi apabila sudah berada pada kondisi yang memerlukan istirahat. Sistem yang dikembangkan berupa sebuah aplikasi Android yang memanfaatkan tiga jenis sensor yaitu kamera depan sebagai sumber data citra wajah dengan resolusi 480p, perangkat EEG portabel sebagai sumber data gelombang otak dan MiBand sebagai sumber data detak jantung. Data dari ketiga sensor ini selanjutnya akan digunakan sebagai input bagi sebuah model neural network untuk melakukan deteksi kantuk. Dari penelitian ini didapatkan hasil bahwa arsitektur 1D CNN lebih cocok digunakan sebagai model dalam sistem pendeteksi kantuk dibandingkan dengan LSTM. Interval waktu 4 menit digunakan pada sistem pendeteksi kantuk yang dikembangkan karena dinilai paling optimal untuk digunakan. Dengan menggunakan data dari sepuluh partisipan, model mampu mendapatkan validation accuracy sebesar 96.30%. Sedangkan dari 12 kali percobaan pengujian sistem pendeteksi kantuk yang dikembangkan, sistem mampu melakukan klasifikasi kantuk dengan tingkat akurasi sebesar 83.3%
Driving in a drowsy condition is one form of carelessness in driving that can be dangerous. Therefore, this research is intended to design and build a drowsy detection system that can warn the driver when they are in a condition that requires to rest. The system was developed in the form of an Android application that utilizes three types of sensors, which are the front camera as a source of face image with 480p resolution, portable EEG devices as a source of brainwaves data and MiBand as the source of heart rate data. Collected data from these three sensors will then be used as input for a neural network model to detect drowsiness. From this study it was found that the 1D CNN architecture is the most suitable to be used as a model in drowsiness detection systems compared to LSTM. A 4-minute time interval is used in the drowsy detection system that was developed because it was considered as the most optimal. By using data from ten participants, the model was able to get a validation accuracy of 96.30%. While from 12 trials of drowsiness detection system testing that was developed, the system can do drowsiness classification with an accuracy rate of 83.3% |