:: eBooks :: Kembali

eBooks :: Kembali

BERRU predictive modeling: best estimate results with reduced uncertainties

Dan Gabriel Cacuci (Springer Nature, 2019)

 Abstrak

This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the authors view, the objective of predictive modeling is to extract best estimate values for model parameters and predicted results, together with best estimate uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information.

 File Digital: 1

Shelf
 BERRU Predictive Modeling.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : e20507008
Entri utama-Nama orang :
Subjek :
Penerbitan : Berlin: Springer Nature, 2019
Sumber Pengatalogan: LibUI eng rda
Tipe Konten: text
Tipe Media: computer
Tipe Pembawa: online resource
Deskripsi Fisik: xiv, 451 pages : illustration
Tautan: https://doi.org/10.1007/978-3-662-58395-1
Lembaga Pemilik:
Lokasi:
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
e20507008 02-20-715254254 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20507008